機器學習-文本分類(2)-新聞文本分類


參考:https://mp.weixin.qq.com/s/6vkz18Xw4USZ3fldd_wf5g

 

1、數據集下載地址

https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/train_set.csv.zip

https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531810/test_a.csv.zip

數據集來自天池比賽,訓練集20w條樣本,測試集A包括5w條樣本。而且文本按照字符級別進行了匿名處理,處理后的數據為下:

這里就直接拆分訓練集為訓練集和測試集了。

在數據集中標簽的對應的關系如下:

{'科技': 0, '股票': 1, '體育': 2, '娛樂': 3, '時政': 4, '社會': 5, '教育': 6, '財經': 7, '家居': 8, '游戲': 9, '房產': 10, '時尚': 11, '彩票': 12, '星座': 13}

評價指標:

2、導入相應包

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import RidgeClassifier
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score

3、讀取數據

train_path="/content/drive/My Drive/nlpdata/news/train_set.csv"
train_df = pd.read_csv(train_path, sep='\t', nrows=15000)
train_df['text']
train_df['label']

4、進行文本分類

(1)n-gram+嶺分類

vectorizer = CountVectorizer(max_features=3000)
train_test = vectorizer.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

0.65441877581244

(2)TF-IDF+嶺分類

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=3000)
train_test = tfidf.fit_transform(train_df['text'])

clf = RidgeClassifier()
clf.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = clf.predict(train_test[10000:])
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

0.8719372173702

5、探究參數對模型的影響

取大小為5000的樣本,保持其他參數不變,令阿爾法從0.15增加至1.5,畫出F1關於阿爾法的圖像

(1)針對於嶺分類而言:阿爾法對模型的影響

sample = train_df[0:5000]
n = int(2*len(sample)/3)
tfidf = TfidfVectorizer(ngram_range=(2,3), max_features=2500)
train_test = tfidf.fit_transform(sample['text'])
train_x = train_test[:n]
train_y = sample['label'].values[:n]
test_x = train_test[n:]
test_y = sample['label'].values[n:]

f1 = []
for i in range(10):
  clf = RidgeClassifier(alpha = 0.15*(i+1), solver = 'sag')
  clf.fit(train_x, train_y)
  val_pred = clf.predict(test_x)
  f1.append(f1_score(test_y, val_pred, average='macro'))

plt.plot([0.15*(i+1) for i in range(10)], f1)
plt.xlabel('alpha')
plt.ylabel('f1_score')
plt.show()

可以看出阿爾法不宜取的過大,也不宜過小。越小模型的擬合能力越強,泛化能力越弱,越大模型的擬合能力越差,泛化能力越強。

(2)max_features對模型的影響

分別取max_features的值為1000、2000、3000、4000,研究max_features對模型精度的影響

f1 = []
features = [1000,2000,3000,4000]
for i in range(4):
  tfidf = TfidfVectorizer(ngram_range=(2,3), max_features=features[i])
  train_test = tfidf.fit_transform(sample['text'])
  train_x = train_test[:n]
  train_y = sample['label'].values[:n]
  test_x = train_test[n:]
  test_y = sample['label'].values[n:]
  clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
  clf.fit(train_x, train_y)
  val_pred = clf.predict(test_x)
  f1.append(f1_score(test_y, val_pred, average='macro'))

plt.plot(features, f1)
plt.xlabel('max_features')
plt.ylabel('f1_score')
plt.show()

可以看出max_features越大模型的精度越高,但是當max_features超過某個數之后,再增加max_features的值對模型精度的影響就不是很顯著了。 

(3) ngram_range對模型的影響

n-gram提取詞語字符數的下邊界和上邊界,考慮到中文的用詞習慣,ngram_range可以在(1,4)之間選取

f1 = []
for i in range(4):
    tfidf = TfidfVectorizer(ngram_range=(1,1), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(2,2), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(3,3), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

    tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=2000)
    train_test = tfidf.fit_transform(sample['text'])
    train_x = train_test[:n]
    train_y = sample['label'].values[:n]
    test_x = train_test[n:]
    test_y = sample['label'].values[n:]
    clf = RidgeClassifier(alpha = 0.1*(i+1), solver = 'sag')
    clf.fit(train_x, train_y)
    val_pred = clf.predict(test_x)
    f1.append(f1_score(test_y, val_pred, average='macro'))

[0.7931919639413474, 0.7831242477075827, 0.6293265527038611, 0.8436709720083034,
0.8127288721306228, 0.791639726421815, 0.6425340629702662, 0.8512559206701422,
0.82151852494927, 0.7978544191527702, 0.6500441251723578, 0.8516726763849712, 0.
8275245575862662, 0.7963717190315031, 0.6577157272412916, 0.8485051384495732]

6、其它分類模型

均使用TF-IDF作為預處理方式。

(1)邏輯回歸

from sklearn import linear_model

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 詞向量 15000*max_features

reg = linear_model.LogisticRegression(penalty='l2', C=1.0,solver='liblinear')
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('預測結果中各類新聞數目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score為')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

預測結果中各類新聞數
0 1032
1 1029
2 782
3 588
4 375
5 316
6 224
8 166
7 161
9 123
10 109
11 60
12 23
13 12
dtype: int64

F1 score為
0.8464704900433653

(2)SGDClassifier

tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 詞向量 15000*max_features

reg = linear_model.SGDClassifier(loss="log", penalty='l2', alpha=0.0001,l1_ratio=0.15)
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('預測結果中各類新聞數目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score為')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

(3)SVM

from sklearn import svm
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5000)
train_test = tfidf.fit_transform(train_df['text']) # 詞向量 15000*max_features

reg = svm.SVC(C=1.0, kernel='linear', degree=3, gamma='auto',decision_function_shape='ovr')
reg.fit(train_test[:10000], train_df['label'].values[:10000])

val_pred = reg.predict(train_test[10000:])
print('預測結果中各類新聞數目')
print(pd.Series(val_pred).value_counts())
print('\n F1 score為')
print(f1_score(train_df['label'].values[10000:], val_pred, average='macro'))

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM