pytorch利用多個GPU並行計算


參考:

https://pytorch.org/docs/stable/nn.html

https://github.com/apachecn/pytorch-doczh/blob/master/docs/1.0/blitz_data_parallel_tutorial.md

https://blog.csdn.net/Answer3664/article/details/98992409

1. torch.nn.DataParallel

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

在正向傳遞中,模塊在每個設備上復制,每個副本處理一部分輸入。在向后傳遞期間,來自每個副本的漸變被加到原始模塊中

  • module:需要並行處理的模型

  • device_ids:並行處理的設備,默認使用所有的cuda

  • output_device:輸出的位置,默認輸出到cuda:0

例子:

net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
output = net(input_var)  # input_var can be on any device, including CPU

torch.nn.DataParallel()返回一個新的模型,能夠將輸入數據自動分配到所使用的GPU上。所以輸入數據的數量應該大於所使用的設備的數量。

2. 一個完整例子

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
 
# parameters and DataLoaders
input_size = 5
output_size = 2
 
batch_size = 30
data_size = 100
 
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
 
 
# 隨機數據集
class RandomDataset(Dataset):
 
    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)
 
    def __getitem__(self, index):
        return self.data[index]
 
    def __len__(self):
        return self.len
 
 
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)
 
 
# 以簡單模型為例,同樣可以用於CNN, RNN 等復雜模型
class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)
 
    def forward(self, input):
        output = self.fc(input)
        print('In model: input size', input.size(), 'output size:', output.size())
        return output
 
 
# 實例
model = Model(input_size, output_size)
 
if torch.cuda.device_count() > 1:
    print("Use", torch.cuda.device_count(), 'gpus')
    model = nn.DataParallel(model)
 
model.to(device)
 
for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print('Outside: input size ', input.size(), 'output size: ', output.size())

輸出:

In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([30, 5]) output size: torch.Size([30, 2])
Outside: input size  torch.Size([30, 5]) output size:  torch.Size([30, 2])
In model: input size torch.Size([10, 5]) output size: torch.Size([10, 2])
Outside: input size  torch.Size([10, 5]) output size:  torch.Size([10, 2])

若有2個GPU:

Use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

若有3個GPU:

Use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

總結:

  • DataParallel自動的划分數據,並將作業發送到多個GPU上的多個模型。

  • DataParallel會在每個模型完成作業后,收集與合並結果然后返回給你。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM