TensorFlow 2.0 搭建神經網絡(擴展)


以下內容主要用於完善上節六步法搭建神經網絡的功能,

  • import
  • train, test  <數據增強>
  • model = tf.keras.models.Sequential
  • model.compile
  • model.fit  <斷點續訓>
  • model.summary  <參數提取,acc/loss 可視化>
  • <前向推理實現應用>

1 數據增強 (增大數據量)

image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(
  rescale = 所有數據將乘以該數值
  rotation_range = 隨機旋轉角度數范圍
  width_shift_range = 隨機寬度偏移量
  height_shift_range = 隨機高度偏移量
  水平翻轉:horizontal_flip = 是否隨機水平翻轉
  隨機縮放:zoom_range = 隨機縮放的范圍 [1-n,1+n] )
image_gen_train.fit(x_train)

  mnist 數據集示例: 

import tensorflow as tf


mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 給數據增加一個維度,使數據和網絡結構匹配
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

image_gen_train = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1. / 1.,  # 如為圖像,分母為255時,可歸至0~1
    rotation_range=45,  # 隨機45度旋轉
    width_shift_range=.15,   # 寬度偏移
    height_shift_range=.15,  # 高度偏移
    horizontal_flip=True,   # 水平翻轉
    zoom_range=0.5  # 將圖像隨機縮放閾量50%
)
image_gen_train.fit(x_train)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28, 1)),
    tf.keras.layers.Dense(128, activation=tf.keras.activations.relu),
    tf.keras.layers.Dense(10, activation=tf.keras.activations.softmax)
])

model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[tf.keras.metrics.sparse_categorical_accuracy])

model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

2 斷點續訓,存取模型

   保存模型:借助 tensorflow 給出的回調函數,直接保存參數和網絡。

tf.keras.callbacks.ModelCheckpoint(
  filepath=路徑文件名, 
  save_weights_only=True, 
  monitor='val_loss', # val_loss or loss 
  save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, 
            validation_data=(x_test, y_test), validation_freq=1, 
            callbacks=[cp_callback])

  注:monitor 配合 save_best_only 可以保存最優模型,包括訓練損失最小模型、測試損失最小模型、訓練准確率最高模型、測試准確率最高模型等。

  讀取模型:

checkpoint_save_path = './checkpoint/mnist.ckpt'
if os.path.exists(checkpoint_save_path + '.index'):
    print('----------load the model----------')
    model.load_weights(checkpoint_save_path)

  示例:

import tensorflow as tf
import os


mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation=tf.keras.activations.relu),
    tf.keras.layers.Dense(10, activation=tf.keras.activations.softmax)
])

model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=[tf.keras.metrics.sparse_categorical_accuracy])

checkpoint_save_path = './checkpoint/mnist.ckpt'
if os.path.exists(checkpoint_save_path + '.index'):
    print('----------load the model----------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_save_path,
    save_weights_only=True,
    monitor='val_loss',
    save_best_only=True
)

history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])
model.summary()

3 參數提取,寫入文本

np.set_printoptions(threshold=np.inf)  # 超過多少省略顯示,np.inf表示無限大
print(model.trainable_variables)  # 模型中可訓練的參數
file = open('./weigths.txt', 'w')
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

4 acc/loss 可視化

history = model.fit()

  history:

  訓練集loss: loss

  測試集loss: val_loss

  訓練集准確率: sparse_categorical_accuracy

  測試集准確率: val_sparse_categorical_accuracy

acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']

# show
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label='Training loss')
plt.plot(val_loss, label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()

5 實現給圖識物的應用程序

   輸入一張手寫數字圖片,輸出識別值:

import tensorflow as tf
import os
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt


model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation=tf.keras.activations.relu),
    tf.keras.layers.Dense(10, activation=tf.keras.activations.softmax)
])

checkpoint_save_path = './checkpoint/mnist.ckpt.index'
model.load_weights(checkpoint_save_path)

preNum = int(input('input the number of test pictures:'))
for i in range(preNum):
    image_path = input('the path of test picture:')
    img = Image.open(image_path)

    img = img.resize((28, 28), Image.ANTIALIAS)
    img_arr = np.array(img.convert('L'))

    for i in range(28):
        for j in range(28):
            if img_arr[i][j] < 200:
                img_arr[i][j] = 255
            else:
                img_arr[i][j] = 0
    img_arr = img_arr / 255.0

    x_predict = img_arr[tf.newaxis, ...]
    result = model.predict(x_predict)
    pred = tf.argmax(result, axis=1)
    print('\n')
    tf.print(pred)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM