字段解析(3)


對象的定義順序和布局順序是不一樣的。我們在寫代碼的時候不用關心內存對齊問題,但是如果內存按照源代碼定義順序進行布局的話,由於cpu讀取內存時是按寄存器(64位)大小單位載入的,如果載入的數據橫跨兩個64位,要操作該數據的話至少需要兩次讀取,加上組合移位,會產生效率問題,甚至會引發異常。比如在一些ARM處理器上,如果不按對齊要求訪問數據, 會觸發硬件異常。

在Class文件中,字段的定義是按照代碼順序排列的,虛擬機加載后會生成相應的數據結構,包含字段的名稱,字段在對象中的偏移等。重新布局后,只要改變相應的偏移值即可。 

獲取到fields后,下面要在ClassFileParser::parseClassFile()函數中進行變量內存布局,如下:

FieldLayoutInfo info;
layout_fields(class_loader, &fac, &parsed_annotations, &info, CHECK_NULL);

傳入的fac是之前介紹的FieldAllocationCount類型的變量,里面已經保存了各個類型變量的數量。 

1、靜態變量的偏移量

代碼如下:

int next_static_oop_offset;
int next_static_double_offset;
int next_static_word_offset;
int next_static_short_offset;
int next_static_byte_offset;

...

// Calculate the starting byte offsets
next_static_oop_offset      = InstanceMirrorKlass::offset_of_static_fields();
next_static_double_offset   = next_static_oop_offset + (  (fac->count[STATIC_OOP]) * heapOopSize  );
if ( fac->count[STATIC_DOUBLE] &&
     (
        Universe::field_type_should_be_aligned(T_DOUBLE) ||  // 方法會返回true
        Universe::field_type_should_be_aligned(T_LONG)       // 方法會返回true
     )
){
  next_static_double_offset = align_size_up(next_static_double_offset, BytesPerLong);
}
next_static_word_offset     = next_static_double_offset + ((fac->count[STATIC_DOUBLE]) * BytesPerLong);
next_static_short_offset    = next_static_word_offset + ((fac->count[STATIC_WORD]) * BytesPerInt);
next_static_byte_offset     = next_static_short_offset + ((fac->count[STATIC_SHORT]) * BytesPerShort);

靜態變量存儲在鏡像類InstanceMirrorKlass中,調用offset_of_static_fields()方法獲取_offset_of_static_fields屬性,也就是存儲靜態字段的偏移量。

在計算next_static_double_offset時,因為首先布局的是oop,所以內存很可能不是按8字節對齊,需要調用align_size_up()方法對內存進行8字節對齊,后面就不需要對齊了,因為一定是自然對齊,8字節對齊肯定是4字節對齊的,4字節對齊肯定是2字節對齊的。

調用InstanceMirrorKlass::offset_of_static_fields()方法會獲取到InstanceMirrorKlass類的_offset_of_static_fields屬性的值,設置_offset_of_static_fields屬性的方法如下:

static void init_offset_of_static_fields() {
    // java.lang.Class類使用InstanceMirrorKlass對象來表示,而java.lang.Class對象通過Oop對象來表示,那么imk->size_helper()獲取的就是
    // Oop對象的大小,左移3位將字轉換為字節
    InstanceMirrorKlass* imk = InstanceMirrorKlass::cast(SystemDictionary::Class_klass());
    _offset_of_static_fields = imk->size_helper() << LogHeapWordSize; // LogHeapWordSize=3
}

靜態字段緊挨着存儲在java.lang.Class對象本身占用的內存大小之后。  

按照oop、double、word、short、byte的順序計算各個靜態變量的偏移量,next_static_xxx_offset指向的就是第一個xxx類型的靜態變量在InstanceMirrorKlass中的偏移量。可以看到,在fac中統計各個類型變量的數量就是為了方便在這里計算偏移量。 

2、非靜態變量的偏移量

計算非靜態字段起始偏移量,在ClassFileParser::layout_fields()函數中有如下代碼調用:

int nonstatic_field_size = _super_klass() == NULL ? 0 : _super_klass()->nonstatic_field_size();
...
int nonstatic_fields_start  = instanceOopDesc::base_offset_in_bytes() + nonstatic_field_size * heapOopSize;
next_nonstatic_field_offset = nonstatic_fields_start;

定義在instanceOop.hpp文件中的類instanceOopDesc中實現的base_offset_in_bytes()函數的實現如下:

// If compressed, the offset of the fields of the instance may not be aligned.
static int base_offset_in_bytes() {
    // offset computation code breaks if UseCompressedClassPointers
    // only is true
    return ( UseCompressedOops && UseCompressedClassPointers ) ?
               klass_gap_offset_in_bytes() :  // 開啟指針壓縮后計算出來的值為12
               sizeof(instanceOopDesc);       // 在64位上計算出來為16
}

因為非靜態變量存儲在instanceOopDesc中,並且父類變量存儲在前,所以nonstatic_fields_start變量表示的就是當前類定義的實例字段所要存儲的起始偏移量位置。 

子類會將父類中定義的所有非靜態字段(包括private修飾的非靜態字段)全部復制,以實現字段繼承。所以上面在計算子類非靜態字段的起始偏移量時,會將父類可被繼承的字段占用的內存也考慮在內。如下圖所示。

 

下面在計算非靜態字段的偏移量時還需要考慮有@Contended注解的類和字段。對於類上的@Contended注解,需要在字段之前填充ContendedPaddingWidth字節,對於有@Contended注解的變量來說,需要單獨考慮布局。相關實例變量的數量需要分別進行計算,如下代碼所示。

// 在類上加@Contended注解的說明可參考:https://www.icode9.com/content-1-375023.html
bool is_contended_class     = parsed_annotations->is_contended();
// Class is contended, pad before all the fields
if (is_contended_class) {
  next_nonstatic_field_offset += ContendedPaddingWidth;  // ContendedPaddingWidth=128
}

// Compute the non-contended fields count.
// The packing code below relies on these counts to determine if some field
// can be squeezed into the alignment gap. Contended fields are obviously exempt from that.
unsigned int nonstatic_double_count = fac->count[NONSTATIC_DOUBLE] - fac_contended.count[NONSTATIC_DOUBLE];
unsigned int nonstatic_word_count   = fac->count[NONSTATIC_WORD]   - fac_contended.count[NONSTATIC_WORD];
unsigned int nonstatic_short_count  = fac->count[NONSTATIC_SHORT]  - fac_contended.count[NONSTATIC_SHORT];
unsigned int nonstatic_byte_count   = fac->count[NONSTATIC_BYTE]   - fac_contended.count[NONSTATIC_BYTE];
unsigned int nonstatic_oop_count    = fac->count[NONSTATIC_OOP]    - fac_contended.count[NONSTATIC_OOP];

// Total non-static fields count, including every contended field
unsigned int nonstatic_fields_count = fac->count[NONSTATIC_DOUBLE] +
                                      fac->count[NONSTATIC_WORD]   +
                                      fac->count[NONSTATIC_SHORT]  +
    				      fac->count[NONSTATIC_BYTE]   +
                                      fac->count[NONSTATIC_OOP];

這里涉及到了對有@Contended注解的實例變量的處理,為了避免偽共享的問題,可能需要在2個變量的存儲布局之間填充一些數據或空白。這個問題在前一篇已經介紹過,這里不再介紹。

如果類上有@Contended注解,最終的相關變量更新后指向如下:

  

在HotSpot中,對象布局有三種模式,如下:

  • allocation_style=0,字段排列順序為oops、longs/doubles、ints、shorts/chars、bytes,最后是填充字段,以滿足對齊要求;
  • allocation_style=1,字段排列順序為longs/doubles、ints、shorts/chars、bytes、oops,最后是填充字段,以滿足對齊要求;
  • allocation_style=2,JVM在布局時會盡量使父類oops和子類oops挨在一起。

另外,由於填充會形成空隙,比如使用壓縮指針時,頭占12字節,后面如果是long類型變量的話,long的對齊要求是8字節,中間會有4個字節的空隙,為了提高內存利用率, 可以把int/short/byte等相對內存占用比較小的對象塞進去,與此同時JVM提供了-XX:+/-CompactFields命令控制該特性,默認開啟。 

bool compact_fields   = CompactFields;         // 默認值為true
int  allocation_style = FieldsAllocationStyle; // 默認的布局為1
// ...

// Rearrange fields for a given allocation style
if( allocation_style == 0 ) {
    // Fields order: oops, longs/doubles, ints, shorts/chars, bytes, padded fields
    next_nonstatic_oop_offset    = next_nonstatic_field_offset;  // 首先布局oop類型的變量
    next_nonstatic_double_offset = next_nonstatic_oop_offset + (nonstatic_oop_count * heapOopSize);
}
else if( allocation_style == 1 ) {
    // Fields order: longs/doubles, ints, shorts/chars, bytes, oops, padded fields
    next_nonstatic_double_offset = next_nonstatic_field_offset; // 首先布局long/double類型的變量
}
else if( allocation_style == 2 ) {
    // Fields allocation: oops fields in super and sub classes are together.
    if(
    	 nonstatic_field_size > 0 && // nonstatic_field_size指的是父類的非靜態變量占用的大小
    	 _super_klass() != NULL && 
         _super_klass->nonstatic_oop_map_size() > 0
     ){
      unsigned int  map_count = _super_klass->nonstatic_oop_map_count();
      OopMapBlock*  first_map = _super_klass->start_of_nonstatic_oop_maps();
      OopMapBlock*  last_map  = first_map + map_count - 1;
      int next_offset = last_map->offset() + (last_map->count() * heapOopSize);
      if (next_offset == next_nonstatic_field_offset) {
        allocation_style = 0;   // allocate oops first
        next_nonstatic_oop_offset    = next_nonstatic_field_offset;
        next_nonstatic_double_offset = next_nonstatic_oop_offset + (nonstatic_oop_count * heapOopSize);
      }
    }

    if( allocation_style == 2 ) {
      allocation_style = 1;     // allocate oops last
      next_nonstatic_double_offset = next_nonstatic_field_offset;
    }
}
else {
     ShouldNotReachHere();
}

對於allocation_style屬性的值為0與為1時的邏輯非常好理解,當為2時,如果父類有OopMapBlock,那么_super_klass->nonstatic_oop_map_size()大於0,並且父類將oop布局在末尾時,此時可使用allocation_style=0來布局,這樣子類會首先將自己的oop布局在開始,正好和父類的oop連在一起,有利於GC掃描處理引用。剩下的其它情況都是按allocation_style屬性的值為1來布局的,也就是oop在末尾。后面在介紹了OopMapBlock后就會對allocation_style等於2時的代碼邏輯有更充分的理解。

選定了布局策略allocation_style后,首先要向空隙中填充屬性,如下:

// count
int nonstatic_oop_space_count   = 0;
int nonstatic_word_space_count  = 0;
int nonstatic_short_space_count = 0;
int nonstatic_byte_space_count  = 0;
// offset
int nonstatic_oop_space_offset;
int nonstatic_word_space_offset;
int nonstatic_short_space_offset;
int nonstatic_byte_space_offset;

// Try to squeeze some of the fields into the gaps due to long/double alignment.
// 向補白空隙中填充字段,填充的順序為int、short、byte、oopmap
if( nonstatic_double_count > 0 ) { // 當有long/double類型的實例變量存在時,可能存在空隙
    int offset = next_nonstatic_double_offset;
    next_nonstatic_double_offset = align_size_up(offset, BytesPerLong);
    // 只有開啟了-XX:+CompactFields命令時才會進行空白填充
    if( compact_fields && offset != next_nonstatic_double_offset ) {
      // Allocate available fields into the gap before double field.
      int length = next_nonstatic_double_offset - offset;
      assert(length == BytesPerInt, "");
      // nonstatic_word_count記錄了word的總數,由於這個gap算一個特殊位置,故把放入這里的word從正常情況刪除,
      // 並加入特殊的nonstatic_word_space_count中。
      nonstatic_word_space_offset = offset;
      if( nonstatic_word_count > 0 ) { // 由於long/double是8字節對齊,所以最多只能有7個字節的空隙,最多只能填充一個word類型的變量
        nonstatic_word_count      -= 1;
        nonstatic_word_space_count = 1; // Only one will fit
        length -= BytesPerInt;
        offset += BytesPerInt;
      }
      nonstatic_short_space_offset = offset;
      while( length >= BytesPerShort && nonstatic_short_count > 0 ) {
        nonstatic_short_count       -= 1;
        nonstatic_short_space_count += 1;
        length -= BytesPerShort;
        offset += BytesPerShort;
      }
      nonstatic_byte_space_offset = offset;
      while( length > 0 && nonstatic_byte_count > 0 ) {
        nonstatic_byte_count       -= 1;
        nonstatic_byte_space_count += 1;
        length -= 1;
      }
      // Allocate oop field in the gap if there are no other fields for that.
      nonstatic_oop_space_offset = offset;
      // when oop fields not first
      // heapOopSize在開啟指針壓縮時為4,否則為8,所以一個oop占用的字節數要看heapOopSize的大小,理論上空隙也最多
      // 只能存放一個oop對象
      // allocation_style必須不等於0,因為等於0時,oop要分配到開始的位置,和父類的oop進行連續存儲,不能
      // 進行空隙填充
      if( length >= heapOopSize && nonstatic_oop_count > 0 && allocation_style != 0 ) {
        nonstatic_oop_count      -= 1;
        nonstatic_oop_space_count = 1; // Only one will fit
        length -= heapOopSize;
        offset += heapOopSize;
      }
    }
}

long/double類型占用8字節,對齊時,最多可能留下7字節的空白。Java數據類型與JVM內部定義的5種數據類型的對應關系如下表所示。

Java數據類型 JVM內部數據類型 數據寬度
reference  oop 4字節(指針壓縮)/8字節
boolean/byte byte 1字節
char/short short 2字節
int/float word 4字節
long/double double 8字節

有可能對齊后會有最多7字節的空隙,這樣就可按順序填充int/float、char/short、boolean/byte及引用類型,充分利用了內存空間。

下面開始計算非靜態變量的偏移量,如下:

next_nonstatic_word_offset   = next_nonstatic_double_offset + (nonstatic_double_count * BytesPerLong);
next_nonstatic_short_offset  = next_nonstatic_word_offset   + (nonstatic_word_count * BytesPerInt);
next_nonstatic_byte_offset   = next_nonstatic_short_offset  + (nonstatic_short_count * BytesPerShort);
next_nonstatic_padded_offset = next_nonstatic_byte_offset   + nonstatic_byte_count;

// let oops jump before padding with this allocation style
// 為1時的布局為: // Fields order: longs/doubles, ints, shorts/chars, bytes, oops, padded fields
if( allocation_style == 1 ) {
    next_nonstatic_oop_offset = next_nonstatic_padded_offset;
    if( nonstatic_oop_count > 0 ) {
      next_nonstatic_oop_offset = align_size_up(next_nonstatic_oop_offset, heapOopSize);
    }
    next_nonstatic_padded_offset = next_nonstatic_oop_offset + (nonstatic_oop_count * heapOopSize);
}

將各個類型的變量在instanceOop中的偏移量計算好后,下面就是計算每個變量的實際偏移量了。 

3、計算每個變量的偏移量

代碼如下:

// Iterate over fields again and compute correct offsets.
// The field allocation type was temporarily stored in the offset slot.
// oop fields are located before non-oop fields (static and non-static).
for (AllFieldStream fs(_fields, _cp); !fs.done(); fs.next()) {
    // skip already laid out fields
    if (fs.is_offset_set())
    	continue;
    // contended instance fields are handled below
    if (fs.is_contended() && !fs.access_flags().is_static()){
    	continue; // 這個循環邏輯不處理有@Contended注解的實例變量
    }
    int real_offset;
    FieldAllocationType atype = (FieldAllocationType) fs.allocation_type();

    // pack the rest of the fields
    switch (atype) {
      case STATIC_OOP:
        real_offset = next_static_oop_offset;
        next_static_oop_offset += heapOopSize;
        break;
      case STATIC_BYTE:
        real_offset = next_static_byte_offset;
        next_static_byte_offset += 1;
        break;
      case STATIC_SHORT:
        real_offset = next_static_short_offset;
        next_static_short_offset += BytesPerShort;
        break;
      case STATIC_WORD:
        real_offset = next_static_word_offset;
        next_static_word_offset += BytesPerInt;
        break;
      case STATIC_DOUBLE:
        real_offset = next_static_double_offset;
        next_static_double_offset += BytesPerLong;
        break;
      case NONSTATIC_OOP:
        if( nonstatic_oop_space_count > 0 ) {
          real_offset = nonstatic_oop_space_offset;
          nonstatic_oop_space_offset += heapOopSize;
          nonstatic_oop_space_count  -= 1;
        } else {
          real_offset = next_nonstatic_oop_offset;
          next_nonstatic_oop_offset += heapOopSize;
        }
        // Update oop maps
        if(
            nonstatic_oop_map_count > 0 &&
            nonstatic_oop_offsets[nonstatic_oop_map_count - 1] ==
            real_offset - int(nonstatic_oop_counts[nonstatic_oop_map_count - 1]) * heapOopSize
	    ){
          // Extend current oop map
          nonstatic_oop_counts[nonstatic_oop_map_count - 1] += 1;
        } else {
          // Create new oop map
          nonstatic_oop_offsets[nonstatic_oop_map_count] = real_offset;
          nonstatic_oop_counts [nonstatic_oop_map_count] = 1;
          nonstatic_oop_map_count += 1;
          if( first_nonstatic_oop_offset == 0 ) { // Undefined
            first_nonstatic_oop_offset = real_offset;
          }
        }
        break;
      case NONSTATIC_BYTE:
        if( nonstatic_byte_space_count > 0 ) {
          real_offset = nonstatic_byte_space_offset;
          nonstatic_byte_space_offset += 1;
          nonstatic_byte_space_count  -= 1;
        } else {
          real_offset = next_nonstatic_byte_offset;
          next_nonstatic_byte_offset += 1;
        }
        break;
      case NONSTATIC_SHORT:
        if( nonstatic_short_space_count > 0 ) {
          real_offset = nonstatic_short_space_offset;
          nonstatic_short_space_offset += BytesPerShort;
          nonstatic_short_space_count  -= 1;
        } else {
          real_offset = next_nonstatic_short_offset;
          next_nonstatic_short_offset += BytesPerShort;
        }
        break;
      case NONSTATIC_WORD:
        if( nonstatic_word_space_count > 0 ) {
          real_offset = nonstatic_word_space_offset;
          nonstatic_word_space_offset += BytesPerInt;
          nonstatic_word_space_count  -= 1;
        } else {
          real_offset = next_nonstatic_word_offset;
          next_nonstatic_word_offset += BytesPerInt;
        }
        break;
      case NONSTATIC_DOUBLE:
        real_offset = next_nonstatic_double_offset;
        next_nonstatic_double_offset += BytesPerLong;
        break;
      default:
        ShouldNotReachHere();
    } // end switch

    fs.set_offset(real_offset);  // 設置真正的偏移量
} // end for

由於第一個變量的偏移量已經計算好,所以接下來就按順序進行連續存儲即可。不過由於實例變量會填充到空隙中,所以還需要考慮這一部分的變量,剩下的同樣是通過計算出來的偏移量連續存儲即可。最終算出來的每個變量的偏移量要調用fs.set_offset()保存起來,這樣就能快速找到這些變量的存儲位置了。

對於NONSTATIC_OOP類型的變量來說,會涉及到OopMapBlock,這個知識點在下一篇中將詳細介紹。 

4、@Contended變量的偏移量

實現代碼如下:

// Handle the contended cases.
//
// Each contended field should not intersect the cache line with another contended field.
// In the absence of alignment information, we end up with pessimistically separating
// the fields with full-width padding.
//
// Additionally, this should not break alignment for the fields, so we round the alignment up
// for each field.
if (nonstatic_contended_count > 0) { // 標注有@Contended注解的字段數量

    // if there is at least one contended field, we need to have pre-padding for them
    next_nonstatic_padded_offset += ContendedPaddingWidth;

    // collect all contended groups
    BitMap bm(_cp->size());
    for (AllFieldStream fs(_fields, _cp); !fs.done(); fs.next()) {
      // skip already laid out fields
      if (fs.is_offset_set()){
    	  continue;
      }
      if (fs.is_contended()) {
        bm.set_bit(fs.contended_group());
      }
    }
    // 將同一組的@Contended變量布局在一起
    int current_group = -1;
    while ((current_group = (int)bm.get_next_one_offset(current_group + 1)) != (int)bm.size()) {
      for (AllFieldStream fs(_fields, _cp); !fs.done(); fs.next()) {
        // skip already laid out fields
        if (fs.is_offset_set())
        	continue;
        // skip non-contended fields and fields from different group
        if (!fs.is_contended() || (fs.contended_group() != current_group))
        	continue;
        // handle statics below
        if (fs.access_flags().is_static())
        	continue;

        int real_offset;
        FieldAllocationType atype = (FieldAllocationType) fs.allocation_type();

        switch (atype) {
          case NONSTATIC_BYTE:
            next_nonstatic_padded_offset = align_size_up(next_nonstatic_padded_offset, 1);
            real_offset = next_nonstatic_padded_offset;
            next_nonstatic_padded_offset += 1;
            break;
          case NONSTATIC_SHORT:
            next_nonstatic_padded_offset = align_size_up(next_nonstatic_padded_offset, BytesPerShort);
            real_offset = next_nonstatic_padded_offset;
            next_nonstatic_padded_offset += BytesPerShort;
            break;
          case NONSTATIC_WORD:
            next_nonstatic_padded_offset = align_size_up(next_nonstatic_padded_offset, BytesPerInt);
            real_offset = next_nonstatic_padded_offset;
            next_nonstatic_padded_offset += BytesPerInt;
            break;
          case NONSTATIC_DOUBLE:
            next_nonstatic_padded_offset = align_size_up(next_nonstatic_padded_offset, BytesPerLong);
            real_offset = next_nonstatic_padded_offset;
            next_nonstatic_padded_offset += BytesPerLong;
            break;
          case NONSTATIC_OOP:
            next_nonstatic_padded_offset = align_size_up(next_nonstatic_padded_offset, heapOopSize);
            real_offset = next_nonstatic_padded_offset;
            next_nonstatic_padded_offset += heapOopSize;

            // Create new oop map
            assert(nonstatic_oop_map_count < max_nonstatic_oop_maps, "range check");
            nonstatic_oop_offsets[nonstatic_oop_map_count] = real_offset;
            nonstatic_oop_counts [nonstatic_oop_map_count] = 1;
            nonstatic_oop_map_count += 1;
            if( first_nonstatic_oop_offset == 0 ) { // Undefined
              first_nonstatic_oop_offset = real_offset;
            }
            break;
          default:
            ShouldNotReachHere();
        }

        if (fs.contended_group() == 0) {
          // Contended group defines the equivalence class over the fields:
          // the fields within the same contended group are not inter-padded.
          // The only exception is default group, which does not incur the
          // equivalence, and so requires intra-padding.
          next_nonstatic_padded_offset += ContendedPaddingWidth;
        }

        fs.set_offset(real_offset);
      } // end for

      // Start laying out the next group.
      // Note that this will effectively pad the last group in the back;
      // this is expected to alleviate memory contention effects for
      // subclass fields and/or adjacent object.
      // If this was the default group, the padding is already in place.
      if (current_group != 0) {
        next_nonstatic_padded_offset += ContendedPaddingWidth;
      }
    } // end while

    // handle static fields
}

同為一組的、有@Contended注解的變量要布局在一起。同一組的變量可能類型不同,並且也不會遵循之前介紹的對實例變量的布局策略,所以要在每次開始之前調用align_size_up()進行對齊操作。在布局完一組后要填充ontendedPaddingWidth個字節,然后使用相同的邏輯布局下一組的變量。最終的變量偏移量同樣會調用fs.set_offset()保存起來,以方便后續進行偏移查找。  

相關文章的鏈接如下:

1、在Ubuntu 16.04上編譯OpenJDK8的源代碼 

2、調試HotSpot源代碼

3、HotSpot項目結構 

4、HotSpot的啟動過程 

5、HotSpot二分模型(1)

6、HotSpot的類模型(2)  

7、HotSpot的類模型(3) 

8、HotSpot的類模型(4)

9、HotSpot的對象模型(5)  

10、HotSpot的對象模型(6) 

11、操作句柄Handle(7)

12、句柄Handle的釋放(8)

13、類加載器 

14、類的雙親委派機制 

15、核心類的預裝載

16、Java主類的裝載  

17、觸發類的裝載  

18、類文件介紹 

19、文件流 

20、解析Class文件 

21、常量池解析(1) 

22、常量池解析(2)

23、字段解析(1)

24、字段解析之偽共享(2) 

作者持續維護的個人博客classloading.com

關注公眾號,有HotSpot源碼剖析系列文章!

     

參考文章:

(1)成員變量重排序  

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM