1.導數
導數(Derivative),也叫導函數值。又名微商,是微積分中的重要基礎概念。
當函數y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx
定義





2.判斷可導
可導函數都是連續的,但是連續函數不一定是可導函數.
例如,y=|x|,在x=0上不可導.即使這個函數是連續的,但是lim(x趨向0+)y'=1,lim(x趨向0-)y'=-1,兩個值不相等,所以不是可導函數。
3.微分
設函數y = f(x)在x的鄰域內有定義,x及x + Δx在此區間內。
如果函數的增量Δy = f(x + Δx) - f(x)可表示為 Δy = AΔx + o(Δx)(其中A是不依賴於Δx的常數),而o(Δx)是比Δx高階的無窮小(注:o讀作奧密克戎,希臘字母)那么稱函數f(x)在點x是可微的,且AΔx稱作函數在點x相應於因變量增量Δy的微分,記作dy,即dy = AΔx。
函數的微分是函數增量的主要部分,且是Δx的線性函數,故說函數的微分是函數增量的線性主部(△x→0)
AΔx叫做函數在點x0相應於自變量增量△x的微分,記作dy,即:dy=AΔx。微分dy是自變量改變量△x的線性函數,dy與△y的差是關於△x的高階無窮小量,我們把dy稱作△y的線性主部。得出: 當△x→0時,△y≈dy。
導數的記號為:(dy)/(dx)=f′(X),我們可以發現,它不僅表示導數的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變量的增量等於自變量的微分),還可表示為dy=f′(X)dX。
4.導數和微分的區別
導數是函數圖像在某一點處的斜率,也就是縱坐標增量(Δy)和橫坐標增量(Δx)在Δx-->0時的比值。微分是指函數圖像在某一點處的切線在橫坐標取得增量Δx以后,縱坐標取得的增量,一般表示為dy。
導數是函數圖像在某一點處的斜率,也就是縱坐標變化率和橫坐標變化率的比值。微分是指函數圖像在某一點處的切線在橫坐標取得Δx以后,縱坐標取得的增量。