JVM系列之:String.intern的性能


簡介

String對象有個特殊的StringTable字符串常量池,為了減少Heap中生成的字符串的數量,推薦盡量直接使用String Table中的字符串常量池中的元素。

那么String.intern的性能怎么樣呢?我們一起來看一下。

String.intern和G1字符串去重的區別

之前我們提到了,String.intern方法會返回字符串常量池中的字符串對象的引用。

而G1垃圾回收器的字符串去重的功能其實和String.intern有點不一樣,G1是讓兩個字符串的底層指向同一個byte[]數組。

有圖為證:

上圖中的String1和String2指向的是同一個byte[]數組。

String.intern的性能

我們看下intern方法的定義:

public native String intern();

大家可以看到這是一個native的方法。native底層肯定是C++實現的。

那么是不是native方法一定會比java方法快呢?

其實native方法有這樣幾個耗時點:

  1. native方法需要調用JDK-JVM接口,實際上是會浪費時間的。
  2. 性能會受到native方法中HashTable實現方法的制約,如果在高並發的情況下,native的HashTable的實現可能成為性能的制約因素。

舉個例子

還是用JMH工具來進行性能分析,我們使用String.intern,HashMap,和ConcurrentHashMap來對比分析,分別調用1次,100次,10000次和1000000。

代碼如下:

@State(Scope.Benchmark)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Fork(value = 1, jvmArgsPrepend = "-XX:+PrintStringTableStatistics")
@Warmup(iterations = 5)
@Measurement(iterations = 5)
public class StringInternBenchMark {

    @Param({"1", "100", "10000", "1000000"})
    private int size;

    private StringInterner str;
    private ConcurrentHashMapInterner chm;
    private HashMapInterner hm;

    @Setup
    public void setup() {
        str = new StringInterner();
        chm = new ConcurrentHashMapInterner();
        hm = new HashMapInterner();
    }

    public static class StringInterner {
        public String intern(String s) {
            return s.intern();
        }
    }

    @Benchmark
    public void useIntern(Blackhole bh) {
        for (int c = 0; c < size; c++) {
            bh.consume(str.intern("doit" + c));
        }
    }

    public static class ConcurrentHashMapInterner {
        private final Map<String, String> map;

        public ConcurrentHashMapInterner() {
            map = new ConcurrentHashMap<>();
        }

        public String intern(String s) {
            String exist = map.putIfAbsent(s, s);
            return (exist == null) ? s : exist;
        }
    }

    @Benchmark
    public void useCurrentHashMap(Blackhole bh) {
        for (int c = 0; c < size; c++) {
            bh.consume(chm.intern("doit" + c));
        }
    }

    public static class HashMapInterner {
        private final Map<String, String> map;

        public HashMapInterner() {
            map = new HashMap<>();
        }

        public String intern(String s) {
            String exist = map.putIfAbsent(s, s);
            return (exist == null) ? s : exist;
        }
    }

    @Benchmark
    public void useHashMap(Blackhole bh) {
        for (int c = 0; c < size; c++) {
            bh.consume(hm.intern("doit" + c));
        }
    }

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
                .include(StringInternBenchMark.class.getSimpleName())
                .build();
        new Runner(opt).run();
    }
}

輸出結果:

Benchmark                                 (size)  Mode  Cnt          Score          Error  Units
StringInternBenchMark.useCurrentHashMap        1  avgt    5         34.259 ±        7.191  ns/op
StringInternBenchMark.useCurrentHashMap      100  avgt    5       3623.834 ±      499.806  ns/op
StringInternBenchMark.useCurrentHashMap    10000  avgt    5     421010.654 ±    53760.218  ns/op
StringInternBenchMark.useCurrentHashMap  1000000  avgt    5   88403817.753 ± 12719402.380  ns/op
StringInternBenchMark.useHashMap               1  avgt    5         36.927 ±        6.751  ns/op
StringInternBenchMark.useHashMap             100  avgt    5       3329.498 ±      595.923  ns/op
StringInternBenchMark.useHashMap           10000  avgt    5     417959.200 ±    62853.828  ns/op
StringInternBenchMark.useHashMap         1000000  avgt    5   79347127.709 ±  9378196.176  ns/op
StringInternBenchMark.useIntern                1  avgt    5        161.598 ±        9.128  ns/op
StringInternBenchMark.useIntern              100  avgt    5      17211.037 ±      188.929  ns/op
StringInternBenchMark.useIntern            10000  avgt    5    1934203.794 ±   272954.183  ns/op
StringInternBenchMark.useIntern          1000000  avgt    5  418729928.200 ± 86876278.365  ns/op

從結果我們可以看到,intern要比其他的兩個要慢。

所以native方法不一定快。intern的用處不是在於速度,而是在於節約Heap中的內存使用。

本文作者:flydean程序那些事

本文鏈接:http://www.flydean.com/jvm-string-intern-performance/

本文來源:flydean的博客

歡迎關注我的公眾號:程序那些事,更多精彩等着您!


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM