基於Docker安裝並使用Elastic APM實現指標監控


Elastic APM安裝教程

一、 CentOS設置

1. 更換阿里源

curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo

yum makecache

2. 安裝網絡工具

yum install net-tools wget -y

3. 使用阿里NTP服務

yum install chrony -y

sed -i "/server/d" /etc/chrony.conf

vi /etc/chrony.conf 增加 server ntp.aliyun.com iburst

systemctl restart chronyd

chronyc tracking

4. 關閉防火牆

systemctl stop firewalld
systemctl disable firewalld

5. 禁用Selinux

vi /etc/selinux/config

SELINUX=disabled

6. 關閉swap和禁用交換

swapoff -a
sudo sysctl vm.swappiness=0

vi /etc/fstab #注釋掉swap這行
vi /etc/sysctl.conf 添加如下

vm.swappiness = 0

論證是否生效

sudo sysctl vm.swappiness

7. 增加文件描述符

vi /etc/security/limits.conf 添加如下

* soft nofile 65536
* hard nofile 65536

8. 設置映射上限

sysctl -w vm.max_map_count=262144

vi /etc/sysctl.conf
vm.max_map_count=262144

sysctl vm.max_map_count

二、 安裝Docker

1. 安裝依賴包

sudo yum install -y yum-utils device-mapper-persistent-data lvm2

2. 設置倉庫

sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

3. 安裝Docker

sudo yum install -y docker-ce docker-ce-cli containerd.io

如果下載速度過慢可以利用本地離線安裝:

cd /home

wget ftp://ftp.vip56.cn:88/software/docker/containerd.io-1.2.13-3.1.el7.x86_64.rpm ftp://ftp.vip56.cn:88/software/docker/docker-ce-19.03.8-3.el7.x86_64.rpm ftp://ftp.vip56.cn:88/software/docker/docker-ce-cli-19.03.8-3.el7.x86_64.rpm

sudo yum localinstall -y containerd.io-1.2.13-3.1.el7.x86_64.rpm docker-ce-19.03.8-3.el7.x86_64.rpm docker-ce-cli-19.03.8-3.el7.x86_64.rpm

4. 啟動並設置開機

sudo systemctl start docker
sudo systemctl enable docker

5. 設置加速器

vi /etc/docker/daemon.json 添加如下內容

{
  "registry-mirrors": ["https://harbor.vip56.cn"]
}

sudo systemctl restart docker

三、 安裝Docker-Compoise

1. 下載安裝包

sudo curl -L ftp://ftp.vip56.cn:88/software/docker/docker-compose-Linux-x86_64 -o /usr/local/bin/docker-compose

2. 設置啟動權限

sudo chmod +x /usr/local/bin/docker-compose

四、 安裝ElasticSearch與Kibana

1. 下載鏡像包

docker pull harbor.vip56.cn/common/elasticsearch:7.8.0

docker pull harbor.vip56.cn/common/kibana:7.8.0

2. 編寫服務腳本

這里服務我們將采用Docker Compose進行部署。

version: '2.2'
services:
  es01:
    image: harbor.vip56.cn/common/elasticsearch:7.8.0
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic

  es02:
    image: harbor.vip56.cn/common/elasticsearch:7.8.0
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic

  es03:
    image: harbor.vip56.cn/common/elasticsearch:7.8.0
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    ports:
      - 9202:9200
    networks:
      - elastic

  kib01:
    image: harbor.vip56.cn/common/kibana:7.8.0
    container_name: kib01
    ports:
      - 5601:5601
    environment:
      ELASTICSEARCH_URL: http://es01:9200
      ELASTICSEARCH_HOSTS: http://es01:9200
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

啟動服務docker-compose up

五、 安裝apm-server服務

1. 下載鏡像

docker pull harbor.vip56.cn/common/apm-server:7.0.1

2. 編寫配置文件

apm-server:
  host: "0.0.0.0:8200"
#queue:
  #mem:
    # Max number of events the queue can buffer.
    #events: 4096

#setup.template.pattern: "apm-%{[observer.version]}-*"
#setup.template.overwrite: false
#setup.template.settings:
  #index:
    #number_of_shards: 1
    #codec: best_compression
    #number_of_routing_shards: 30
    #mapping.total_fields.limit: 2000

output.elasticsearch:
  hosts: ["192.168.153.154:9200"]

  # Number of workers per Elasticsearch host.
  #worker: 1

  indices:
    - index: "apm-%{[observer.version]}-sourcemap"
      when.contains:
        processor.event: "sourcemap"

    - index: "apm-%{[observer.version]}-error-%{+yyyy.MM.dd}"
      when.contains:
        processor.event: "error"

    - index: "apm-%{[observer.version]}-transaction-%{+yyyy.MM.dd}"
      when.contains:
        processor.event: "transaction"

    - index: "apm-%{[observer.version]}-span-%{+yyyy.MM.dd}"
      when.contains:
        processor.event: "span"

    - index: "apm-%{[observer.version]}-metric-%{+yyyy.MM.dd}"
      when.contains:
        processor.event: "metric"

    - index: "apm-%{[observer.version]}-onboarding-%{+yyyy.MM.dd}"
      when.contains:
        processor.event: "onboarding"

  #max_retries: 3
  #bulk_max_size: 50
  #backoff.max: 60s
  #timeout: 90

#logging.level: info
#logging.to_syslog: true
#logging.metrics.enabled: false
#logging.metrics.period: 30s
#logging.to_files: true
#logging.files:
  #path: /var/log/apm-server
  #name: apm-server
  #rotateeverybytes: 10485760 # = 10MB
  #keepfiles: 7
  #permissions: 0600
  #interval: 0
#logging.json: false

#http.enabled: false
#http.host: localhost
#http.port: 5066

2. 啟動服務

docker run -d --name=apm-server --user=apm-server --volume="$(pwd)/apm-server.yml:/usr/share/apm-serv
er/apm-server.yml:ro" -p 8200:8200 harbor.vip56.cn/common/apm-server:7.0.1

六、 各語言平台接入

1. .Net Core接入

新建一個ASP.NET CORE項目,然后安裝Elastic.Apm.AspNetCore包,並且在以下
方法中使用對應的初始化方法:

public class Startup
{
  public void Configure(IApplicationBuilder app, IHostingEnvironment env)
  {
    app.UseElasticApm(Configuration);
  }
}

完成以上代碼初始化后,接着我們需要編寫對應的配置項以實現接入appsettings.json

"ElasticApm": {
  "SecretToken": "",
  "ServerUrls": "http://localhost:8200",
  "ServiceName" : "MyApp", 
}

2. .Net Core Api使用

上述的方式僅僅實現了采集常規的Http服務的請求,如果開發者還希望采集諸如由HttpClient
ERCore發出的請求則需要手動進行相關的注冊:

public class Startup
{
  public void Configure(IApplicationBuilder app, IHostingEnvironment env)
  {
    app.UseElasticApm(Configuration,
      new HttpDiagnosticsSubscriber(),
      new EfCoreDiagnosticsSubscriber());
  }
}

除了以上提供的基於現有框架的度量指標采集外,我們還可以通過對應的API實現自主的度量指標
的記錄注入,比如下面這種方式:

            var transaction = Elastic.Apm.Agent.Tracer.StartTransaction("MyTransaction", ApiConstants.TypeRequest);

            transaction.Labels["system"] = "tmsystem";
            transaction.Labels["group"] = "coregroup";

            try
            {
                var span1 = transaction.StartSpan("from db", "Database");
                Thread.Sleep(100);
                var childspan1 = span1.StartSpan("from db2", "subspan");
                Thread.Sleep(50);
                childspan1.End();
                span1.End();
            }
            catch(Exception ex)
            {
                transaction.CaptureException(ex);
                throw;
            }
            finally
            {
                transaction.End();
            }

有時因為需要調用其他方法,但是內部方法沒有transaction對象,此時為了不破壞函數的入參
我們就需要利用var transaction = Elastic.Apm.Agent.Tracer.CurrentTransaction;
獲取對象,如果對象為NULL則代表當前沒有創建過該對象,保證對應方法也能進行度量指標記錄。對應的還有子級SPAN也可以通過var span = Elastic.Apm.Agent.Tracer.CurrentSpan;方式獲取。

4. Java接入

首先我們需要在對應項目中引用具體框架,比如pom.xml文件:

<dependency>
    <groupId>co.elastic.apm</groupId>
    <artifactId>apm-agent-attach</artifactId>
    <version>1.17.0</version>
</dependency>

然后我們需要在項目的main方法中進行初始化,比如下面我們就以Spring Boot為例進行說明:

@RetrofitServiceScan
@SpringBootApplication
public class Application {
    public static void main(String[] args) {
        ElasticApmAttacher.attach();
        SpringApplication.run(Application.class, args);
    }
}

接着編寫對應的配置文件elasticapm.properties寫入如下內容:

service_name=my-cool-service
application_packages=com.logidelta.industrialbigdata
server_urls=http://192.168.153.155:8200

5. Java API使用

除了本身已經自帶的指標采集外,我們還可以通過對應的API實現自注指標的采集推送,首先我們
需要引入對應的庫才能實現,打開pom.xml文件增加如下內容:

<dependency>
	<groupId>co.elastic.apm</groupId>
	<artifactId>apm-agent-api</artifactId>
	<version>1.17.0</version>
</dependency>

完成以上的引入之后我們就可以使用Java API進行自定義指標的采集了,比如如下方式:

        Transaction transaction = ElasticApm.currentTransaction();
        try {
            transaction.setName("DeviceController#Test");
            transaction.setType(Transaction.TYPE_REQUEST);
            transaction.addLabel("system", "tmsyste");
            transaction.addLabel("group", "coregroup");
            Span span1 = transaction.startSpan("from db", "mysql", "query");
            span1.setName("select * from db");
            span1.end();
        } catch (Exception e) {
            transaction.captureException(e);
            throw e;
        } finally {
            transaction.end();
        }

這里我們直接使用currentTransaction方法,內部會自行實現對象的創建,所以可以不必檢查
是否為NULL,對應的currentSpan也是一樣的。

除了以上通過使用具體方法外,還可以通過注解屬性快速便攜的進行相關度量指標的采集,如
@CaptureTransaction@CaptureSpan@Traced


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM