Torchtext
文本數據預處理工具
Field
定義數據處理的方式,將原始數據轉為
TENSOR
Field使用
from torchtext import data
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
LABEL = data.Field(sequential=False, use_vocab=False)
Field參數
參數名 | 說明 |
---|---|
sequential | Default: True 是否是序列數據,如果不是就不使用tokenization |
use_vocab | Default: True 是否使用a Vocab object.如果不使用的話,原始數據應已是數字類型. |
init_token | Default: None A token that will be prepended to every example using this field, or None for no initial token. |
eos_token | A token that will be appended to every example using this field, or None for no end-of-sentence token. Default: None. |
fix_length | Default: None. 設置序列數據的定長 eg. 100 |
dtype | The torch.dtype class that represents a batch of examples of this kind of data. Default: torch.long. |
preprocessing | The Pipeline that will be applied to examples using this field after tokenizing but before numericalizing. Many Datasets replace this attribute with a custom preprocessor. Default: None. |
postprocessing | A Pipeline that will be applied to examples using this field after numericalizing but before the numbers are turned into a Tensor. The pipeline function takes the batch as a list, and the field’s Vocab. Default: None. |
lower | Default: False. 字符串轉為小寫 |
tokenize | Default: string.split 對原始數據進行字符串操作,eg. 輸入tokenize = lambda x: x.split() |
tokenizer_language | The language of the tokenizer to be constructed. Various languages currently supported only in SpaCy. |
include_lengths | Whether to return a tuple of a padded minibatch and a list containing the lengths of each examples, or just a padded minibatch. Default: False. |
batch_first | Default: False 是否返回batch維度在第一個維度的數據 |
pad_token | The string token used as padding. Default: “
|
unk_token | The string token used to represent OOV words. Default: “
|
pad_first | Do the padding of the sequence at the beginning. Default: False. |
truncate_first | Do the truncating of the sequence at the beginning. Default: False |
stop_words | Tokens to discard during the preprocessing step. Default: None |
is_target | Whether this field is a target variable. Affects iteration over batches. Default: False |
Dataset
使用Field來定義數據組成形式,得到數據集
Dataset使用
自定義Dataset類
from torchtext import data
import random
import numpy as np
class MyDataset(data.Dataset):
def __init__(self, csv_path, text_field, label_field, test=False, aug=False, **kwargs):
csv_data = pd.read_csv(csv_path)
# 數據處理操作格式
fields = [("id", None),("text", text_field), ("label", label_field)]
examples = []
if test:
# 如果為測試集,則不加載標簽
for text in tqdm(csv_data['text']):
examples.append(data.Example.fromlist([None, text, None], fields))
else:
for text, label in tqdm(zip(csv_data['text'], csv_data['label'])):
# 數據增強
if aug:
rate = random.random()
if rate > 0.5:
text = self.dropout(text)
else:
text = self.shuffle(text)
examples.append(data.Example.fromlist([None, text, label], fields))
# 上面是一些預處理操作,此處調用super調用父類構造方法,產生標准Dataset
# super(MyDataset, self).__init__(examples, fields, **kwargs)
super(MyDataset, self).__init__(examples, fields)
def shuffle(self, text):
# 序列隨機排序
text = np.random.permutation(text.strip().split())
return ' '.join(text)
def dropout(self, text, p=0.5):
# 隨機刪除一些文本
text = text.strip().split()
len_ = len(text)
indexs = np.random.choice(len_, int(len_ * p))
for i in indexs:
text[i] = ''
return ' '.join(text)
Iterator
迭代器 Iterator / BucketIterator
Iterator
保持數據樣本順序不變來構建批數據
BucketIterator
自動選取樣本長度相似的數據來構建批數據,最大程度地減少所需的填充量
from torchtext import data
def data_iter(train_path, valid_path, test_path, TEXT, LABEL):
train = MyDataset(train_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
valid = MyDataset(valid_path, text_field=TEXT, label_field=LABEL, test=False, aug=1)
test = MyDataset(test_path, text_field=TEXT, label_field=None, test=True, aug=1)
# 傳入用於構建詞表的數據集
# TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, fix_length=200)
TEXT.build_vocab(train)
weight_matrix = TEXT.vocab.vectors
# 只針對訓練集構造迭代器
# train_iter = data.BucketIterator(dataset=train, batch_size=8, shuffle=True, sort_within_batch=False, repeat=False)
# 同時對訓練集和驗證集構造迭代器
train_iter, val_iter = data.BucketIterator.splits(
(train, valid),
batch_sizes=(8, 8),
# 如果使用gpu,此處將-1更換為GPU的編號
device=-1,
# 用來排序的指標
sort_key=lambda x: len(x.text),
sort_within_batch=False,
repeat=False
)
test_iter = Iterator(test, batch_size=8, device=-1, sort=False, sort_within_batch=False, repeat=False)
return train_iter, val_iter, test_iter, weight_matrix
Word Embedding
在使用pytorch或tensorflow等神經網絡框架進行nlp任務的處理時,可以通過對應的Embedding層做詞向量的處理。使用預訓練好的詞向量會帶來更優的性能,下面介紹如何在torchtext中使用預訓練的詞向量,進而傳送給神經網絡模型進行訓練。
torchtext 默認支持的預訓練詞向量
自動下載對應的預訓練詞向量文件到當前文件夾下的.vector_cache目錄下,.vector_cache為默認的詞向量文件和緩存文件的目錄。
from torchtext.vocab import GloVe
from torchtext import data
TEXT = data.Field(sequential=True)
# 以下兩種指定預訓練詞向量的方式等效
# TEXT.build_vocab(train, vectors="glove.6B.200d")
TEXT.build_vocab(train, vectors=GloVe(name='6B', dim=300))
# 在這種情況下,會默認下載glove.6B.zip文件,進而解壓出glove.6B.50d.txt, glove.6B.100d.txt
外部預訓練的詞向量
通過
name
參數指定預訓練文件,通過cache
參數指定預訓練文件目錄
cache = '.vector_cache'
vectors = Vectors(name='myvector/glove/glove.6B.200d.txt', cache=cache)
TEXT.build_vocab(train, vectors=vectors)
在模型中指定Embedding層參數
import torch.nn as nn
# pytorch創建的Embedding層
embedding = nn.Embedding(input_dim, hidden_dim)
# 權重在詞匯表vocab的vectors屬性中
weight_matrix = TEXT.vocab.vectors
# 指定嵌入矩陣的初始權重
embedding.weight.data.copy_(weight_matrix)