Python爬取前程無憂十萬條招聘數據


前言:本文是介紹利用代理IP池以及多線程完成前程無憂網站的是十萬條招聘信息的采集工作,已適當控制采集頻率,采集數據僅為了學習使用,采集十萬條招聘信息大概需要十個小時。

起因是在知乎上看到另一個程序猿寫的前程無憂的爬蟲代碼,對於他的一些反反爬蟲處理措施抱有一絲懷疑態度,於是在他的代碼的基礎上進行改造,優化了線程的分配以及頁面訪問的頻率,並加入了代理IP池的處理,優化了爬蟲效率。

原始代碼文章鏈接:https://zhuanlan.zhihu.com/p/146425439

首先,奉上本文依賴的基礎的爬蟲代碼

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "頁的數據")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
        }
        html = requests.get(url, headers=headers)
        html.encoding = "gbk"
        etree = etree.HTML(html.text)
        # ①崗位名稱
        JobName = etree.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名稱
        CompanyName = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地點
        Address = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工資
        sal = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤發布時間
        ShowTime = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥獲取職位詳情url
        DetailUrl = etree.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            htmlInfo = requests.get(DetailUrl[i], headers=headers)
            htmlInfo.encoding = "gbk"
            etreeInfo = etree.HTML(htmlInfo.text)
            # ⑦經驗、學歷信息等其他信息
            otherinfo = etreeInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧崗位詳情
            JobDescibe = etreeInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司類型
            CompanyType = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司規模(人數)
            CompanySize = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所屬行業(公司)
            industry = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #將上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(CompanyType)
            CompanySize.append(CompanySize)
            Industry.append(industry)
            # 休眠
            time.sleep(0.5)
        # 一邊爬取一邊寫入
        data = pd.DataFrame()
        data["崗位名稱"] = JobName
        data["工作地點"] = Address
        data["公司名稱"] = CompanyName
        data["工資"] = salary
        data["發布日期"] = ShowTime
        data["經驗、學歷"] = OthersInfo
        data["所屬行業"] = Industry
        data["公司類型"] = CompanyType
        data["公司規模"] = CompanySize
        data["崗位描述"] = JobDescribe
        # 有些網頁會跳轉到公司官網,會返回空值,所以將其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳轉官網,無數據")
        time.sleep(1)
    print("數據爬取完成!!!!")

經過實驗,發現這段代碼存在以下幾個問題,1.爬蟲的效率低;2.爬蟲的過程中報錯有點頻繁;3.訪問網頁的延時時間都是固定的,這樣很容易被網站識別到

首先,解決第一個問題,原作者的解決方案是以多線程的方式處理,代碼如下

import requests,time,warnings,threading
import pandas as pd
from lxml import etree
warnings.filterwarnings("ignore")

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "頁的數據")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
        }
        html = requests.get(url, headers=headers)
        html.encoding = "gbk"
        Html = etree.HTML(html.text)
        # ①崗位名稱
        JobName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名稱
        CompanyName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地點
        Address = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工資
        sal = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤發布時間
        ShowTime = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥獲取職位詳情url
        DetailUrl = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            HtmlInfo = requests.get(DetailUrl[i], headers=headers)
            HtmlInfo.encoding = "gbk"
            HtmlInfo = etree.HTML(HtmlInfo.text)
            # ⑦經驗、學歷信息等其他信息
            otherinfo = HtmlInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧崗位詳情
            JobDescibe = HtmlInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司類型
            ComType = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司規模(人數)
            ComSize = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所屬行業(公司)
            industry = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #將上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(ComType)
            CompanySize.append(ComSize)
            Industry.append(industry)
            # 休眠
            time.sleep(0.5)
        # 一邊爬取一邊寫入
        data = pd.DataFrame()
        data["崗位名稱"] = JobName
        data["工作地點"] = Address
        data["公司名稱"] = CompanyName
        data["工資"] = salary
        data["發布日期"] = ShowTime
        data["經驗、學歷"] = OthersInfo
        data["所屬行業"] = Industry
        data["公司類型"] = CompanyType
        data["公司規模"] = CompanySize
        data["崗位描述"] = JobDescribe
        # 有些網頁會跳轉到公司官網,會返回空值,所以將其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳轉官網,無數據")
        time.sleep(1)
    print("數據爬取完成!!!!")

threads = []
t1 = threading.Thread(target=getdata,args=(1,125))
threads.append(t1)
t2 = threading.Thread(target=getdata,args=(125,250))
threads.append(t2)
t3 = threading.Thread(target=getdata,args=(250,375))
threads.append(t3)
t4 = threading.Thread(target=getdata,args=(375,500))
threads.append(t4)
t5 = threading.Thread(target=getdata,args=(500,625))
threads.append(t5)
t6 = threading.Thread(target=getdata,args=(625,750))
threads.append(t6)
t7 = threading.Thread(target=getdata,args=(750,875))
threads.append(t7)
t8 = threading.Thread(target=getdata,args=(875,1000))
threads.append(t8)
t9 = threading.Thread(target=getdata,args=(1000,1125))
threads.append(t9)
t10 = threading.Thread(target=getdata,args=(1125,1250))
threads.append(t10)
t11 = threading.Thread(target=getdata,args=(1250,1375))
threads.append(t11)
t12 = threading.Thread(target=getdata,args=(1375,1500))
threads.append(t12)

if __name__ == "__main__":
    for t in threads:
        t.setDaemon(True)
        t.start()

確實增加了爬蟲的速度,但這樣做會有一個問題,就是爬蟲的質量變差了,准確的說就是出錯的幾率提高了,被反爬蟲策略識別到的次數增加了

首先從代碼生成的角度,我優化了一下多線程的生成方法,允許用戶自定義線程數作為參數傳遞,通過總的頁數進行均分,如下所示

# 分配線程任務
def start_spider(num):
    start = 1
    end = 0
    count = 2000
    size = count//(num-1)
    print(size)
    while num > 1:
        end = start+size
        t = threading.Thread(target=getdata,args=(start,end))
        start = end+1
        t.start()
        num = num-1
    # 分配剩下的任務給新的線程
    if(end < count):
        start = end+1
        end = count
        t = threading.Thread(target=getdata,args=(start,end))
        t.start()

代碼優化了之后,我們調整下爬蟲時頁面訪問的延遲,改為一個隨機數

            Industry.append(industry)
            # 休眠
            time.sleep(random.uniform(0.1,1))
        # 一邊爬取一邊寫入
        data = pd.DataFrame()
        data["崗位名稱"] = JobName
        data["工作地點"] = Address
        data["公司名稱"] = CompanyName
        data["工資"] = salary
        data["發布日期"] = ShowTime
        data["經驗、學歷"] = OthersInfo
        data["所屬行業"] = Industry
        data["公司類型"] = CompanyType
        data["公司規模"] = CompanySize
        data["崗位描述"] = JobDescribe
        # 有些網頁會跳轉到公司官網,會返回空值,所以將其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳轉官網,無數據")
        time.sleep(random.uniform(0.2,0.5))

最后利用代理IP池的方式來提高爬蟲的質量

這里我分享一個很好用的代理IP池項目:https://github.com/jhao104/proxy_pool

這個項目在我等會分享的gitee開源項目中也拷貝了一份:https://gitee.com/chengrongkai/OpenSpiders

配置IP代理池的方法就參考這個項目的readme就行了

下面我奉上我對這個項目的代碼改造

# 利用代理IP請求
def getHtml(url):
    # ....
    retry_count = 5
    proxy = get_proxy().get("proxy")
    while retry_count > 0:
        try:
            headers = {
                        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
                    }
            print("代理信息:{}".format(proxy))
            html = requests.get(url,headers=headers, proxies={"http": "http://{}".format(proxy)})
            # 使用代理訪問
            return html
        except Exception:
            retry_count -= 1
    # 出錯5次, 刪除代理池中代理
    delete_proxy(proxy)
    return None

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "頁的數據")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        html = getHtml(url)
        if(html == None):
            continue
        html.encoding = "gbk"
        Html = etree.HTML(html.text)
        # ①崗位名稱
        JobName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名稱
        CompanyName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地點
        Address = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工資
        sal = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤發布時間
        ShowTime = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥獲取職位詳情url
        DetailUrl = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            HtmlInfo = getHtml(DetailUrl[i])
            HtmlInfo.encoding = "gbk"
            HtmlInfo = etree.HTML(HtmlInfo.text)
            if(HtmlInfo == None):
                continue
            # ⑦經驗、學歷信息等其他信息
            otherinfo = HtmlInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧崗位詳情
            JobDescibe = HtmlInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司類型
            ComType = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司規模(人數)
            ComSize = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所屬行業(公司)
            industry = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #將上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(ComType)
            CompanySize.append(ComSize)
            Industry.append(industry)
            # 休眠
            time.sleep(random.uniform(0.1,1))
        # 一邊爬取一邊寫入
        data = pd.DataFrame()
        data["崗位名稱"] = JobName
        data["工作地點"] = Address
        data["公司名稱"] = CompanyName
        data["工資"] = salary
        data["發布日期"] = ShowTime
        data["經驗、學歷"] = OthersInfo
        data["所屬行業"] = Industry
        data["公司類型"] = CompanyType
        data["公司規模"] = CompanySize
        data["崗位描述"] = JobDescribe
        # 有些網頁會跳轉到公司官網,會返回空值,所以將其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳轉官網,無數據")
        time.sleep(random.uniform(0.2,0.5))
        print("數據爬取完成!!!!")

我自己的機器測試了下,8個線程爬取了一個半小時,采集了一萬五的數據,這里我有意的降慢了速度,大家可以根據實際情況進行調整,比如代理IP的重試可以去掉,如果出現無法采集就直接刪除代理IP池中的該IP即可,另外線程數也可以按照電腦配置適當增加,在不計質量的情況下,應該可以達到一個小時一萬五左右的采集量,單機的情況下,如果有更好的解決方案,歡迎留言,下篇文章將講述如何對獲取到的數據進行清洗以及數據分析。

本文所有代碼均開源在https://gitee.com/chengrongkai/OpenSpiders

歡迎star,你的鼓勵是我最大的動力

本文首發於https://www.bizhibihui.com/


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM