Operator部署Prometheus


一、介紹

Operator是CoreOS公司開發,用於擴展kubernetes API或特定應用程序的控制器,它用來創建、配置、管理復雜的有狀態應用,例如數據庫,監控系統。其中Prometheus-Operator就是其中一個重要的項目。


其架構圖如下:

其中核心部分是Operator,它會去創建Prometheus、ServiceMonitor、AlertManager、PrometheusRule這4個CRD對象,然后會一直監控並維護這4個對象的狀態。

  • Prometheus:作為Prometheus Server的抽象
  • ServiceMonitor:就是exporter的各種抽象
  • AlertManager:作為Prometheus AlertManager的抽象
  • PrometheusRule:實現報警規則的文件


上圖中的 Service 和 ServiceMonitor 都是 Kubernetes 的資源,一個 ServiceMonitor 可以通過 labelSelector 的方式去匹配一類 Service,Prometheus 也可以通過 labelSelector 去匹配多個ServiceMonitor。

二、安裝

注意集群版本的坑,自己先到Github上下載對應的版本。

image.png


我們使用源碼來安裝,首先克隆源碼到本地:

# git clone https://github.com/coreos/kube-prometheus.git


我們進入kube-prometheus/manifests/setup,就可以直接創建CRD對象:

# cd kube-prometheus/manifests/setup
# kubectl apply -f .


然后在上層目錄創建資源清單:

# cd kube-prometheus/manifests
# kubectl apply -f .


可以看到創建如下的CRD對象:

# kubectl get crd | grep coreos
alertmanagers.monitoring.coreos.com     2019-12-02T03:03:37Z
podmonitors.monitoring.coreos.com       2019-12-02T03:03:37Z
prometheuses.monitoring.coreos.com      2019-12-02T03:03:37Z
prometheusrules.monitoring.coreos.com   2019-12-02T03:03:37Z
servicemonitors.monitoring.coreos.com   2019-12-02T03:03:37Z


查看創建的pod:

# kubectl get pod -n monitoring 
NAME                                  READY   STATUS    RESTARTS   AGE
alertmanager-main-0                   2/2     Running   0          2m37s
alertmanager-main-1                   2/2     Running   0          2m37s
alertmanager-main-2                   2/2     Running   0          2m37s
grafana-77978cbbdc-886cc              1/1     Running   0          2m46s
kube-state-metrics-7f6d7b46b4-vrs8t   3/3     Running   0          2m45s
node-exporter-5552n                   2/2     Running   0          2m45s
node-exporter-6snb7                   2/2     Running   0          2m45s
prometheus-adapter-68698bc948-6s5f2   1/1     Running   0          2m45s
prometheus-k8s-0                      3/3     Running   1          2m27s
prometheus-k8s-1                      3/3     Running   1          2m27s
prometheus-operator-6685db5c6-4tdhp   1/1     Running   0          2m52s


查看創建的Service:

# kubectl get svc -n monitoring 
NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
alertmanager-main       ClusterIP   10.68.97.247    <none>        9093/TCP                     3m51s
alertmanager-operated   ClusterIP   None            <none>        9093/TCP,9094/TCP,9094/UDP   3m41s
grafana                 ClusterIP   10.68.234.173   <none>        3000/TCP                     3m50s
kube-state-metrics      ClusterIP   None            <none>        8443/TCP,9443/TCP            3m50s
node-exporter           ClusterIP   None            <none>        9100/TCP                     3m50s
prometheus-adapter      ClusterIP   10.68.109.201   <none>        443/TCP                      3m50s
prometheus-k8s          ClusterIP   10.68.9.232     <none>        9090/TCP                     3m50s
prometheus-operated     ClusterIP   None            <none>        9090/TCP                     3m31s
prometheus-operator     ClusterIP   None            <none>        8080/TCP                     3m57s


我們看到我們常用的prometheus和grafana都是clustorIP,我們要外部訪問可以配置為NodePort類型或者用ingress。比如配置為ingress:
prometheus-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: prometheus-ingress
  namespace: monitoring
  annotations:
    kubernetes.io/ingress.class: "traefik"
spec:
  rules:
  - host: prometheus.joker.com
    http:
      paths:
      - path:
        backend: 
          serviceName: prometheus-k8s 
          servicePort: 9090


grafana-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: grafana-ingress
  namespace: monitoring
  annotations:
    kubernetes.io/ingress.class: "traefik"
spec:
  rules:
  - host: grafana.joker.com
    http:
      paths:
      - path:
        backend: 
          serviceName: grafana
          servicePort: 3000


但是我們這里由於沒有域名進行備案,我們就用NodePort類型。修改后如下:

# kubectl get svc -n monitoring 
NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
grafana                 NodePort    10.68.234.173   <none>        3000:39807/TCP               3h1m                    3h1m
prometheus-k8s          NodePort    10.68.9.232     <none>        9090:20547/TCP               3h1m


然后就可以正常在瀏覽器訪問了。

三、配置

3.1、監控集群資源

我們可以看到大部分的配置都是正常的,只有兩三個沒有管理到對應的監控目標,比如 kube-controller-manager 和 kube-scheduler 這兩個系統組件,這就和 ServiceMonitor 的定義有關系了,我們先來查看下 kube-scheduler 組件對應的 ServiceMonitor 資源的定義:(prometheus-serviceMonitorKubeScheduler.yaml)

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    k8s-app: kube-scheduler
  name: kube-scheduler
  namespace: monitoring
spec:
  endpoints:
  - interval: 30s # 每30s獲取一次信息
    port: http-metrics  # 對應service的端口名
  jobLabel: k8s-app
  namespaceSelector: # 表示去匹配某一命名空間中的service,如果想從所有的namespace中匹配用any: true
    matchNames:
    - kube-system
  selector:  # 匹配的 Service 的labels,如果使用mathLabels,則下面的所有標簽都匹配時才會匹配該service,如果使用matchExpressions,則至少匹配一個標簽的service都會被選擇
    matchLabels:
      k8s-app: kube-scheduler

上面是一個典型的 ServiceMonitor 資源文件的聲明方式,上面我們通過selector.matchLabels在 kube-system 這個命名空間下面匹配具有k8s-app=kube-scheduler這樣的 Service,但是我們系統中根本就沒有對應的 Service,所以我們需要手動創建一個 Service:(prometheus-kubeSchedulerService.yaml)

apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-scheduler
  labels:
    k8s-app: kube-scheduler
spec:
  selector:
    component: kube-scheduler
  ports:
  - name: http-metrics
    port: 10251
    targetPort: 10251
    protocol: TCP

10251是kube-scheduler組件 metrics 數據所在的端口,10252是kube-controller-manager組件的監控數據所在端口。

其中最重要的是上面 labels 和 selector 部分,labels 區域的配置必須和我們上面的 ServiceMonitor 對象中的 selector 保持一致,selector下面配置的是component=kube-scheduler,為什么會是這個 label 標簽呢,我們可以去 describe 下 kube-scheduelr 這個 Pod:

$ kubectl describe pod kube-scheduler-master -n kube-system
Name:         kube-scheduler-master
Namespace:    kube-system
Node:         master/10.151.30.57
Start Time:   Sun, 05 Aug 2018 18:13:32 +0800
Labels:       component=kube-scheduler
              tier=control-plane
......

我們可以看到這個 Pod 具有component=kube-scheduler和tier=control-plane這兩個標簽,而前面這個標簽具有更唯一的特性,所以使用前面這個標簽較好,這樣上面創建的 Service 就可以和我們的 Pod 進行關聯了,直接創建即可:

$ kubectl create -f prometheus-kubeSchedulerService.yaml
$ kubectl get svc -n kube-system -l k8s-app=kube-scheduler
NAME             TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)     AGE
kube-scheduler   ClusterIP   10.102.119.231   <none>        10251/TCP   18m

創建完成后,隔一小會兒后去 prometheus 查看 targets 下面 kube-scheduler 的狀態:
promethus kube-scheduler error
我們可以看到現在已經發現了 target,但是抓取數據結果出錯了,這個錯誤是因為我們集群是使用 kubeadm 搭建的,其中 kube-scheduler 默認是綁定在127.0.0.1上面的,而上面我們這個地方是想通過節點的 IP 去訪問,所以訪問被拒絕了,我們只要把 kube-scheduler 綁定的地址更改成0.0.0.0即可滿足要求,由於 kube-scheduler 是以靜態 Pod 的形式運行在集群中的,所以我們只需要更改靜態 Pod 目錄下面對應的 YAML 文件即可:

$ ls /etc/kubernetes/manifests/
etcd.yaml  kube-apiserver.yaml  kube-controller-manager.yaml  kube-scheduler.yaml

將 kube-scheduler.yaml 文件中-command的--address地址更改成0.0.0.0:

containers:
- command:
- kube-scheduler
- --leader-elect=true
- --kubeconfig=/etc/kubernetes/scheduler.conf
- --address=0.0.0.0

修改完成后我們將該文件從當前文件夾中移除,隔一會兒再移回該目錄,就可以自動更新了,然后再去看 prometheus 中 kube-scheduler 這個 target 是否已經正常了:
promethues-operator-kube-scheduler
大家可以按照上面的方法嘗試去修復下 kube-controller-manager 組件的監控。

3.2、監控集群外資源

很多時候我們並不是把所有資源都部署在集群內的,經常有比如ectd,kube-scheduler等都部署在集群外。其監控流程和上面大致一樣,唯一的區別就是在定義Service的時候,其EndPoints是需要我們自己去定義的。

3.2.1、監控kube-scheduler

(1)、定義Service和EndPoints
prometheus-KubeSchedulerService.yaml

apiVersion: v1
kind: Service
metadata:
  name: kube-scheduler
  namespace: kube-system
  labels:
    k8s-app: kube-scheduler
spec: 
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10251
    targetPort: 10251
    protocol: TCP
---
apiVersion: v1
kind: Endpoints
metadata:
  name: kube-scheduler
  namespace: kube-system
  labels:
    k8s-app: kube-scheduler
subsets:
- addresses:
  - ip: 172.16.0.33
  ports:
  - name: http-metrics
    port: 10251
    protocol: TCP


(2)、定義ServiceMonitor
prometheus-serviceMonitorKubeScheduler.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: kube-scheduler
  namespace: monitoring
  labels:
    k8s-app: kube-scheduler
spec:
  endpoints:
  - interval: 30s
    port: http-metrics
  jobLabel: k8s-app
  namespaceSelector:
    matchNames:
    - kube-system
  selector:
    matchLabels:
      k8s-app: kube-scheduler


然后我們就可以看到其監控上了:image.png

3.2.2、監控kube-controller-manager

(1)、配置Service和EndPoints,
prometheus-KubeControllerManagerService.yaml

apiVersion: v1
kind: Service
metadata:
  name: kube-controller-manager
  namespace: kube-system
  labels:
    k8s-app: kube-controller-manager
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10252
    targetPort: 10252
    protocol: TCP
---
apiVersion: v1
kind: Endpoints
metadata:
  name: kube-controller-manager
  namespace: kube-system
  labels:
    k8s-app: kube-controller-manager
subsets:
- addresses:
  - ip: 172.16.0.33
  ports:
  - name: http-metrics
    port: 10252
    protocol: TCP


(2)、配置ServiceMonitor
prometheus-serviceMonitorKubeControllerManager.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    k8s-app: kube-controller-manager
  name: kube-controller-manager
  namespace: monitoring
spec:
  endpoints:
  - interval: 30s
    metricRelabelings:
    - action: drop
      regex: etcd_(debugging|disk|request|server).*
      sourceLabels:
      - __name__
    port: http-metrics
  jobLabel: k8s-app
  namespaceSelector:
    matchNames:
    - kube-system
  selector:
    matchLabels:
      k8s-app: kube-controller-manager

image.png

3.2.3、監控etcd

很多情況下,我們的etcd都需要進行SSL認證的,所以首先需要將用到的證書保存到集群中去。
(根據自己集群證書的位置修改)

kubectl -n monitoring create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.key --from-file=/etc/kubernetes/pki/etcd/ca.crt


然后將上面創建的 etcd-certs 對象配置到 prometheus 資源對象中,直接更新 prometheus 資源對象即可:

#  kubectl edit prometheus k8s -n monitoring


添加如下的 secrets 屬性:

nodeSelector:
  beta.kubernetes.io/os: linux
replicas: 2
secrets:
- etcd-certs


更新完成后,我們就可以在 Prometheus 的 Pod 中獲取到上面創建的 etcd 證書文件了,具體的路徑我們可以進入 Pod 中查看:

# kubectl exec -it prometheus-k8s-0 -n monitoring -- /bin/sh
Defaulting container name to prometheus.
Use 'kubectl describe pod/prometheus-k8s-0 -n monitoring' to see all of the containers in this pod.
/prometheus $  ls /etc/prometheus/secrets/etcd-certs/
ca.crt      healthcheck-client.crt  healthcheck-client.key
/prometheus $ 


(1)、創建ServiceMonitor
prometheus-serviceMonitorEtcd.yamlns

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: k8s-etcd
  namespace: monitoring
  labels:
    k8s-app: k8s-etcd
spec:
  jobLabel: k8s-app
  endpoints:
  - port: port
    interval: 30s
    scheme: https
    tlsConfig:
      caFile: /etc/prometheus/secrets/etcd-certs/ca.crt
      certFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt
      keyFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key
      insecureSkipVerify: true
  selector:
    matchLabels:
      k8s-app: k8s-etcd
  namespaceSelector:
    matchNames:
    - kube-system

上面我們在 monitoring 命名空間下面創建了名為 k8s-etcd 的 ServiceMonitor 對象,基本屬性和前面章節中的一致,匹配 kube-system 這個命名空間下面的具有 k8s-app=k8s-etcd 這個 label 標簽的 Service,jobLabel 表示用於檢索 job 任務名稱的標簽,和前面不太一樣的地方是 endpoints 屬性的寫法,配置上訪問 etcd 的相關證書,endpoints 屬性下面可以配置很多抓取的參數,比如 relabel、proxyUrl,tlsConfig 表示用於配置抓取監控數據端點的 tls 認證,由於證書 serverName 和 etcd 中簽發的可能不匹配,所以加上了 insecureSkipVerify=true.


然后創建這個配置清單:

# kubectl apply -f prometheus-serviceMonitorEtcd.yaml


(2)、創建Service

apiVersion: v1
kind: Service
metadata:
  name: k8s-etcd
  namespace: kube-system
  labels:
    k8s-app: k8s-etcd
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: port
    port: 2379
    protocol: TCP

---
apiVersion: v1
kind: Endpoints
metadata:
  name: k8s-etcd
  namespace: kube-system
  labels:
    k8s-app: k8s-etcd
subsets:
- addresses:
  - ip: 172.16.0.33
  ports:
  - name: port
    port: 2379
    protocol: TCP

image.png
然后在Grafana中導入3070的面板。
image.png

3.3、配置報警規則Rule

我們創建一個 PrometheusRule 資源對象后,會自動在上面的 prometheus-k8s-rulefiles-0 目錄下面生成一個對應的 - .yaml文件,所以如果以后我們需要自定義一個報警選項的話,只需要定義一個 PrometheusRule 資源對象即可,但是要求這個資源對象必須得有 prometheus=k8s 和 role=alert-rules 這一對標簽。
如下配置Ectd報警規則:
prometheus-etcdRule.yaml

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  name: etcd-rules
  namespace: monitoring
  labels:
    prometheus: k8s
    role: alert-rules
spec:
  groups:
  - name: etcd
    rules:
    - alert: EtcdClusterUnavailable
      annotations:
        summary: etcd cluster small
        description: If one more etcd peer goes down the cluster will be unavailable
      expr: |
        count(up{job="etcd"} == 0) > (count(up{job="etcd"}) / 2 - 1)
      for: 3m
      labels:
        severity: critical

然后我們創建這個配置清單:

# kubectl apply -f prometheus-etcdRule.yaml
prometheusrule.monitoring.coreos.com/etcd-rules created


然后我們刷新頁面,就可以看到已經生效了
image.png

3.4、配置報警

首先我們將 alertmanager-main 這個 Service 改為 NodePort 類型的 Service,修改完成后我們可以在頁面上的 status 路徑下面查看 AlertManager 的配置信息:

# kubectl get svc -n monitoring 
NAME                    TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                      AGE
alertmanager-main       NodePort    10.68.97.247    <none>        9093:21936/TCP               5h31m


然后在瀏覽器查看:
image.png


這些配置信息實際上是來自於我們之前在kube-prometheus/manifests目錄下面創建的 alertmanager-secret.yaml 文件:

apiVersion: v1
data:
  alertmanager.yaml: Imdsb2JhbCI6CiAgInJlc29sdmVfdGltZW91dCI6ICI1bSIKInJlY2VpdmVycyI6Ci0gIm5hbWUiOiAibnVsbCIKInJvdXRlIjoKICAiZ3JvdXBfYnkiOgogIC0gImpvYiIKICAiZ3JvdXBfaW50ZXJ2YWwiOiAiNW0iCiAgImdyb3VwX3dhaXQiOiAiMzBzIgogICJyZWNlaXZlciI6ICJudWxsIgogICJyZXBlYXRfaW50ZXJ2YWwiOiAiMTJoIgogICJyb3V0ZXMiOgogIC0gIm1hdGNoIjoKICAgICAgImFsZXJ0bmFtZSI6ICJXYXRjaGRvZyIKICAgICJyZWNlaXZlciI6ICJudWxsIg==
kind: Secret
metadata:
  name: alertmanager-main
  namespace: monitoring
type: Opaque


可以將 alertmanager.yaml 對應的 value 值做一個 base64 解碼:

# echo "Imdsb2JhbCI6CiAgInJlc29sdmVfdGltZW91dCI6ICI1bSIKInJlY2VpdmVycyI6Ci0gIm5hbWUiOiAibnVsbCIKInJvdXRlIjoKICAiZ3JvdXBfYnkiOgogIC0gImpvYiIKICAiZ3JvdXBfaW50ZXJ2YWwiOiAiNW0iCiAgImdyb3VwX3dhaXQiOiAiMzBzIgogICJyZWNlaXZlciI6ICJudWxsIgogICJyZXBlYXRfaW50ZXJ2YWwiOiAiMTJoIgogICJyb3V0ZXMiOgogIC0gIm1hdGNoIjoKICAgICAgImFsZXJ0bmFtZSI6ICJXYXRjaGRvZyIKICAgICJyZWNlaXZlciI6ICJudWxsIg==" | base64 -d
"global":
  "resolve_timeout": "5m"
"receivers":
- "name": "null"
"route":
  "group_by":
  - "job"
  "group_interval": "5m"
  "group_wait": "30s"
  "receiver": "null"
  "repeat_interval": "12h"
  "routes":
  - "match":
      "alertname": "Watchdog"
    "receiver": "null"


可以看到上面的內容和我們在網頁上查到的是一致的。
如果要配置報警媒介,就可以修改這個模板:
alertmanager.yaml

global:
  resolve_timeout: 5m
  smtp_smarthost: 'smtp.163.com:465'
  smtp_from: 'fmbankops@163.com'
  smtp_auth_username: 'fmbankops@163.com'
  smtp_auth_password: '<郵箱密碼>'
  smtp_hello: '163.com'
  smtp_require_tls: false
route:
  group_by: ['job', 'severity']
  group_wait: 30s
  group_interval: 5m
  repeat_interval: 12h
  receiver: default
  routes:
  - receiver: webhook
    match:
      alertname: CoreDNSDown
receivers:
- name: 'default'
  email_configs:
  - to: '517554016@qq.com'
    send_resolved: true
- name: 'webhook'
  webhook_configs:
  - url: 'http://dingtalk-hook.kube-ops:5000'   # 這是我們自定義的webhook
    send_resolved: true


然后我們更新secret對象:

# 先將之前的 secret 對象刪除
$ kubectl delete secret alertmanager-main -n monitoring
secret "alertmanager-main" deleted
$ kubectl create secret generic alertmanager-main --from-file=alertmanager.yaml -n monitoring
secret "alertmanager-main" created


然后就會收到報警信息:
image.png
image.png

四、高級配置

4.1、自動發現規則配置

我們在實際應用中會部署非常多的service和pod,如果要一個一個手動的添加監控將會是一個非常重復,浪費時間的工作,這時候就需要使用自動發現機制。我們在手動搭建Prometheus的過程中曾配置過自動發現service,其主要的配置文件如下:

- job_name: 'kubernetes-service-endpoints'
  kubernetes_sd_configs:
  - role: endpoints
  relabel_configs:
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
    action: keep
    regex: true
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
    action: replace
    target_label: __scheme__
    regex: (https?)
  - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
    action: replace
    target_label: __metrics_path__
    regex: (.+)
  - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
    action: replace
    target_label: __address__
    regex: ([^:]+)(?::\d+)?;(\d+)
    replacement: $1:$2
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - source_labels: [__meta_kubernetes_namespace]
    action: replace
    target_label: kubernetes_namespace
  - source_labels: [__meta_kubernetes_service_name]
    action: replace
    target_label: kubernetes_name

要想自動被發現,只需要在service的配置清單中加上annotations:  prometheus.io/scrape=true。
我們將上面的文件保存為prometheus-additional.yaml,然后用這個文件創建一個secret。

# kubectl -n monitoring create secret generic additional-config --from-file=prometheus-additional.yaml 
secret/additional-config created


然后我們在prometheus的配置清單中添加這個配置:
cat prometheus-prometheus.yaml

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  labels:
    prometheus: k8s
  name: k8s
  namespace: monitoring
spec:
  alerting:
    alertmanagers:
    - name: alertmanager-main
      namespace: monitoring
      port: web
  baseImage: quay.io/prometheus/prometheus
  nodeSelector:
    kubernetes.io/os: linux
  podMonitorSelector: {}
  replicas: 2
  resources:
    requests:
      memory: 400Mi
  ruleSelector:
    matchLabels:
      prometheus: k8s
      role: alert-rules
  securityContext:
    fsGroup: 2000
    runAsNonRoot: true
    runAsUser: 1000
  additionalScrapeConfigs:
    name: additional-config
    key: prometheus-additional.yaml
  serviceAccountName: prometheus-k8s
  serviceMonitorNamespaceSelector: {}
  serviceMonitorSelector: {}
  version: v2.11.0


然后更新一下prometheus的配置:

# kubectl apply -f prometheus-prometheus.yaml 
prometheus.monitoring.coreos.com/k8s configured


然后我們查看prometheus的日志,發現很多錯誤:

# kubectl logs -f prometheus-k8s-0 prometheus -n monitoring


image.png


從日志可以看出,其提示的是權限問題,在kubernetes中涉及到權限問題一般就是RBAC中配置問題,我們查看prometheus的配置清單發現其使用了一個prometheus-k8s的ServiceAccount:
image.png


而其綁定的是一個叫prometheus-k8s的ClusterRole:

# kubectl get clusterrole prometheus-k8s -n monitoring  -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"rbac.authorization.k8s.io/v1","kind":"ClusterRole","metadata":{"annotations":{},"name":"prometheus-k8s"},"rules":[{"apiGroups":[""],"resources":["nodes/metrics"],"verbs":["get"]},{"nonResourceURLs":["/metrics"],"verbs":["get"]}]}
  creationTimestamp: "2019-12-02T03:03:44Z"
  name: prometheus-k8s
  resourceVersion: "1128592"
  selfLink: /apis/rbac.authorization.k8s.io/v1/clusterroles/prometheus-k8s
  uid: 4f87ca47-7769-432b-b96a-1b826b28003d
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- nonResourceURLs:
  - /metrics
  verbs:
  - get

從上面可以知道,這個clusterrole並沒有service和pod的一些相關權限。接下來我們修改這個clusterrole。
prometheus-clusterRole.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus-k8s
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  - configmaps
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - nodes
  - pods
  - services
  - endpoints
  - nodes/proxy
  verbs:
  - get
  - list
  - watch
- nonResourceURLs:
  - /metrics
  verbs:
  - get


然后我們更新這個資源清單:

# kubectl apply -f prometheus-clusterRole.yaml
clusterrole.rbac.authorization.k8s.io/prometheus-k8s configured


然后等待一段時間我們可以發現自動發現成功。
image.png


提示:配置自動發現,首先annotations里需要配置prometheus.io/scrape=true,其次你的應用要有exporter去收集信息,比如我們如下的redis配置:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: redis
  namespace: kube-ops
spec:
  template:
    metadata:
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "9121"
      labels:
        app: redis
    spec:
      containers:
      - name: redis
        image: redis:4
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 6379
      - name: redis-exporter
        image: oliver006/redis_exporter:latest
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
        ports:
        - containerPort: 9121
---
kind: Service
apiVersion: v1
metadata:
  name: redis
  namespace: kube-ops
  annotations:
    prometheus.io/scrape: "true"
    prometheus.io/port: "9121"
spec:
  selector:
    app: redis
  ports:
  - name: redis
    port: 6379
    targetPort: 6379
  - name: prom
    port: 9121
    targetPort: 9121

4.2、數據持久化配置

如果我們直接git clone下來的,不做任何修改,Prometheus雖然使用的是statefuleSet,但是其用的存儲卷是emptyDir,在刪除Pod或者重建Pod,原始數據是會丟失的。所以在真實環境我們需要對其進行持久化,首先創建storageClass,如果是用NFS做持久化,詳見第四章持久化存儲中的storageClass部分。我們這里依然用的NFS做持久化。


創建StorageClass:
prometheus-storage.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: prometheus-storage
provisioner: rookieops/nfs

其中provisioner需要指定我們在創建nfs-client-provisioner中指定的名字,不能隨意修改。


配置prometheus的配置清單:
prometheus-prometheus.yaml

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  labels:
    prometheus: k8s
  name: k8s
  namespace: monitoring
spec:
  alerting:
    alertmanagers:
    - name: alertmanager-main
      namespace: monitoring
      port: web
  storage:
    volumeClaimTemplate:
      spec:
        storageClassName: prometheus-storage
        resources:
          requests:
            storage: 20Gi
  baseImage: quay.io/prometheus/prometheus
  nodeSelector:
    kubernetes.io/os: linux
  podMonitorSelector: {}
  replicas: 2
  resources:
    requests:
      memory: 400Mi
  ruleSelector:
    matchLabels:
      prometheus: k8s
      role: alert-rules
  securityContext:
    fsGroup: 2000
    runAsNonRoot: true
    runAsUser: 1000
  additionalScrapeConfigs:
    name: additional-config
    key: prometheus-additional.yaml
  serviceAccountName: prometheus-k8s
  serviceMonitorNamespaceSelector: {}
  serviceMonitorSelector: {}
  version: v2.11.0


然后就可以正常使用持久化了,建議在部署之初就做更改。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM