實驗五 RYU控制器基本應用


ubuntu鏡像地址:https://pan.baidu.com/s/1qYN_MtUboPmruHda1DgrTA  提取碼:mhfi

本實驗分兩個部分

實驗一使用命令行啟動控制器,使用simple_switch_13.py組件查看效果,實驗二對simple_switch_13.py進行分析。

一、實驗一

  參考:https://blog.csdn.net/caiqiiqi/article/details/79698143

 1、創建拓撲

   參數說明:

  --controller 自己指定一個控制器,一般用remote指定遠程控制器。還可以用--ip 與 --port 指定地址和端口號

  --mac 自動設置mac地址,並讓其從小到大排列

  --switch 設置交換機的類型。交換機分為內核型(lxbr),用戶型(user),OVS型(ovsk,ovsbr,ivs)。內核型和OVS型比用戶型吞吐量大的多,常被選用。

  -x 打開所有節點的終端

 2、設置交換機s1上的OpenFlow版本並查看流表

  3、執行ryu控制器

   參數說明:

  --verbose:顯示調試信息

  ryu.app.simple_switch_13為提供了傳統2層交換機策略的組件。其他組件見下圖

  調試信息中,

  EVENT ofp_event->SimpleSwitch13 EventOFPSwitchFeatures

       switch features ev version=0x4,msg_type=0x6,msg_len=0x20,xid=0x99ea8d54,OFPSwitchFeatures(auxiliary_id=0,capabilities=79,datapath_id=1,n_buffers=256,n_tables=254)
  這里是獲取交換機的特征的過程,會在其他隨筆里具體分析。

  對以上幾個字段分析:

    在ryu/ryu/lib/packet/openflow.py 可查看基本屬性的意義。

     在ryu/ryu/ofproto/ofproto_v1_3.py可查看各類型的值的意義。

屬性 意義
version 0x4 OpenFlow1.3版本
msg_type 0x6

這是OPEN_FEATURE_REPLY報文

msg_len 0x20 報文長度
xid 0x99ea8d54 交互的編號

 4、查看交換機s1流表,發現多了一條Table-miss的流表項。

   存在時長11秒,表號為0,匹配數據包22個,匹配字節數1764B,優先級為0(最低),動作為發送到控制器,65535表示不緩存數據包(OFP_NO_BUFFER)。

   5、用h1 ping h2,並用wireshark抓包詳細過程

  • h1 ping h2過程:

1). h1 -> ff:ff:ff:ff:ff:ff(廣播) ARP Request, 查詢h2的MAC地址;
2). h2-> h1 ARP Reply, 響應h2的MAC地址;
3). h1-> h2 ICMP echo request;
4). h2-> h1 ICMP echo reply

  • 詳細過程分析:  

  (1)h1 發送ARP請求報文,源mac為h1mac,目的mac為ffffffffffff,交換機未匹配到流表項,向控制器發送Packet_In報文(編號1440)。

  (2)控制器將入端口1與h1的mac地址綁定,並回復Packet_Out報文給交換機,讓其執行FLOOD(泛洪)操作,交換機向除了入端口以外的端口泛洪ARP請求報文(編號1441)。

  (3)h2接收到ARP請求報文,回復ARP應答報文,源mac為h2mac,目的mac為h1mac,交換機未匹配到流表項,向控制器發送Packet_In報文(編號1446).

  (4)控制器將入端口2與h2的mac地址綁定,再看交換機送來的數據包,發現源mac(h2mac)和目的mac(h1mac)都已經和入端口綁定,所以可以下發一條流表項(Flow_Mod報文):

      FlowEntry1:源地址:h2mac,目的地址:h1mac,動作:output 1 (從端口1發出)(編號1447)

  (5)h1收到ARP應答報文后,開始向h2發送ICMP請求數據包,數據包發送至交換機時,交換機s1未匹配到流表項,向控制器發送Packet_In報文。(編號1450)

  (6)控制器查看交換機發來的數據包,發現源mac(h1mac)和目的mac(h2mac)都已經和入端口綁定,所以可以下發一條流表項(Flow_Mod報文):

      FlowEntry2:源地址:h1mac,目的地址:h2mac,動作:output 2 (從端口2發出)(編號1451)

  (7)交換機按流表項轉發ICMP請求/應答數據包,ping過程順利完成。

   6、查看交換機流表項和控制器日志

    交換機多了2條流表項,源mac地址分別為h1和h2,目的mac為h2和h1,優先級為1,入端口分別為1和2,動作分別為從2/1端口發出,這也就是由ping生成的流表項。第二條流表項匹配數據包數比第一條少1的原因是h1一開始發的ARP請求是廣播形式,所以dst_mac為ff:ff:ff:ff:ff:ff,而不是00:00:00:00:00:01。

    同樣,在控制器的Log日志里也寫明了觸發了多次Packet_In事件,由上述的分析說明最后3次Packet_In事件是由這次ping觸發的,第一次為 h1的ARP請求報文觸發的,第二次由ARP回復報文觸發的,第三次是h1給h2發送ICMP請求報文觸發的。

  二、實驗二 分析simple_switch_13.py

    參考:https://blog.csdn.net/xiajx98/article/details/92798847

    1、simple_switch_13.py在ryu/ryu/app目錄下,以下是完整代碼:    

  1 # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
  2 #
  3 # Licensed under the Apache License, Version 2.0 (the "License");
  4 # you may not use this file except in compliance with the License.
  5 # You may obtain a copy of the License at
  6 #
  7 #    http://www.apache.org/licenses/LICENSE-2.0
  8 #
  9 # Unless required by applicable law or agreed to in writing, software
 10 # distributed under the License is distributed on an "AS IS" BASIS,
 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 12 # implied.
 13 # See the License for the specific language governing permissions and
 14 # limitations under the License.
 15 
 16 from ryu.base import app_manager
 17 from ryu.controller import ofp_event
 18 from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
 19 from ryu.controller.handler import set_ev_cls
 20 from ryu.ofproto import ofproto_v1_3
 21 from ryu.lib.packet import packet
 22 from ryu.lib.packet import ethernet
 23 from ryu.lib.packet import ether_types
 24 
 25 
 26 class SimpleSwitch13(app_manager.RyuApp):
 27     OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 28 
 29     def __init__(self, *args, **kwargs):
 30         super(SimpleSwitch13, self).__init__(*args, **kwargs)
 31         self.mac_to_port = {}
 32 
 33     @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
 34     def switch_features_handler(self, ev):
 35         datapath = ev.msg.datapath
 36         ofproto = datapath.ofproto
 37         parser = datapath.ofproto_parser
 38 
 39         # install table-miss flow entry
 40         #
 41         # We specify NO BUFFER to max_len of the output action due to
 42         # OVS bug. At this moment, if we specify a lesser number, e.g.,
 43         # 128, OVS will send Packet-In with invalid buffer_id and
 44         # truncated packet data. In that case, we cannot output packets
 45         # correctly.  The bug has been fixed in OVS v2.1.0.
 46         match = parser.OFPMatch()
 47         actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
 48                                           ofproto.OFPCML_NO_BUFFER)]
 49         self.add_flow(datapath, 0, match, actions)
 50 
 51     def add_flow(self, datapath, priority, match, actions, buffer_id=None):
 52         ofproto = datapath.ofproto
 53         parser = datapath.ofproto_parser
 54 
 55         inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
 56                                              actions)]
 57         if buffer_id:
 58             mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
 59                                     priority=priority, match=match,
 60                                     instructions=inst)
 61         else:
 62             mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
 63                                     match=match, instructions=inst)
 64         datapath.send_msg(mod)
 65 
 66     @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
 67     def _packet_in_handler(self, ev):
 68         # If you hit this you might want to increase
 69         # the "miss_send_length" of your switch
 70         if ev.msg.msg_len < ev.msg.total_len:
 71             self.logger.debug("packet truncated: only %s of %s bytes",
 72                               ev.msg.msg_len, ev.msg.total_len)
 73         msg = ev.msg
 74         datapath = msg.datapath
 75         ofproto = datapath.ofproto
 76         parser = datapath.ofproto_parser
 77         in_port = msg.match['in_port']
 78 
 79         pkt = packet.Packet(msg.data)
 80         eth = pkt.get_protocols(ethernet.ethernet)[0]
 81 
 82         if eth.ethertype == ether_types.ETH_TYPE_LLDP:
 83             # ignore lldp packet
 84             return
 85         dst = eth.dst
 86         src = eth.src
 87 
 88         dpid = datapath.id
 89         self.mac_to_port.setdefault(dpid, {})
 90 
 91         self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
 92 
 93         # learn a mac address to avoid FLOOD next time.
 94         self.mac_to_port[dpid][src] = in_port
 95 
 96         if dst in self.mac_to_port[dpid]:
 97             out_port = self.mac_to_port[dpid][dst]
 98         else:
 99             out_port = ofproto.OFPP_FLOOD
100 
101         actions = [parser.OFPActionOutput(out_port)]
102 
103         # install a flow to avoid packet_in next time
104         if out_port != ofproto.OFPP_FLOOD:
105             match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
106             # verify if we have a valid buffer_id, if yes avoid to send both
107             # flow_mod & packet_out
108             if msg.buffer_id != ofproto.OFP_NO_BUFFER:
109                 self.add_flow(datapath, 1, match, actions, msg.buffer_id)
110                 return
111             else:
112                 self.add_flow(datapath, 1, match, actions)
113         data = None
114         if msg.buffer_id == ofproto.OFP_NO_BUFFER:
115             data = msg.data
116 
117         out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
118                                   in_port=in_port, actions=actions, data=data)
119         datapath.send_msg(out)

    2、分段代碼    

1 class SimpleSwitch13(app_manager.RyuApp):

  繼承了ryu.base.app_manager

    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

  OFP_VERSIONS是指OpenFlow版本,這里調取了在ofproto_v1_3.py里聲明的靜態變量OFP_VERSION,值為4,為OpenFlow1.3版本。

  self.mac_to_port是一個保存(交換機id, mac地址)到轉發端口的字典。  

 1     @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
 2     def switch_features_handler(self, ev):
 3         datapath = ev.msg.datapath
 4         ofproto = datapath.ofproto
 5         parser = datapath.ofproto_parser
 6 
 7         match = parser.OFPMatch()
 8         actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
 9                                           ofproto.OFPCML_NO_BUFFER)]
10         self.add_flow(datapath, 0, match, actions)

  這是利用了一個裝飾器實現了對事件的控制。這里要了解兩個知識,控制器事件和控制器狀態。

  控制器事件(Event),Event具體見ryu/controller/ofp_event.py,其事件名稱是由接收到的報文類型來命名的,名字為Event+報文類型,例如本例中,控制器收到的是交換機發送的FEATURE_REPLY報文,所以事件名稱為EventOFPSwitchFeatures。所以本事件其實就是當控制器接收到FEATURE_REPLY報文觸發。

  控制器狀態:ryu控制器和交換機交互有4個階段,詳見ryu/ryu/controller/handler.py

   4個狀態:

  • HANDSHAKE_DISPATCHER:發送Hello報文並等待對端Hello報文。
  • CONFIG_DISPATCHER:協商版本並發送FEATURE-REQUEST報文。
  • MAIN_DISPATCHER:已收到FEATURE-REPLY報文並發送SET-CONFIG報文。
  • DEAD_DISPATCHER:與對端斷開連接。

     綜上,以上代碼說明了當控制器處於CONFIG_DISPATCHER狀態並且接受到FEATURE_REPLY報文時,執行switch_features_handler()函數。

  再來看函數中的內容:

1    def switch_features_handler(self, ev):
2  3         datapath = ev.msg.datapath
3  4         ofproto = datapath.ofproto
4  5         parser = datapath.ofproto_parser
5  6 
6  7         match = parser.OFPMatch()
7  8         actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
8  9                                           ofproto.OFPCML_NO_BUFFER)]
9 10         self.add_flow(datapath, 0, match, actions)

  datapath存儲交換機的信息,match指流表項匹配,這里OFPMatch()指不匹配任何信息,actions是動作,表示匹配成功不緩存數據包並發送給控制器。最后add_flow是添加流表項的函數,我們在完整代碼中可以看到add_flow調用了send_msg(mod)說明這里會發出Flow_Mod報文,所以上述過程就是下發Table-miss流表項的過程。  

 1     def add_flow(self, datapath, priority, match, actions, buffer_id=None):
 2           ofproto = datapath.ofproto
 3           parser = datapath.ofproto_parser
 4   
 5           inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
 6                                                actions)]//立即執行動作,各靜態變量說明見 ryu/ryu/ofproto/ofproto_v1_3.py
 7           if buffer_id:
 8               mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
 9                                       priority=priority, match=match,
10                                       instructions=inst)
11           else:
12               mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
13                                       match=match, instructions=inst)
14           datapath.send_msg(mod)

  add_flow()函數作用是增加流表項,參數有datapath,優先級,匹配項,動作,buffer_id。上述代碼說明了,此流表項匹配成功后應立即執行所規定的動作。如果此函數參數有buffer_id(就是交換機發送來的數據包有buffer_id,即交換機有緩存),那發送的Flow_Mod報文就帶上buffer_id,若沒有buffer_id,buffer_id就是None。最后,發出Flow_Mod報文,所以添加流表項是通過Flow_Mod報文實現。

1 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
2     def _packet_in_handler(self, ev):

  這段代碼說明了控制器在MAIN_DISPATCHER狀態並且觸發Packet_In事件時調用_packet_in_handler函數。

 # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)

  這段代碼是指傳輸出錯,打印debug信息。

 1         msg = ev.msg
 2         datapath = msg.datapath
 3         ofproto = datapath.ofproto
 4         parser = datapath.ofproto_parser
 5         in_port = msg.match['in_port']
 6 
 7         pkt = packet.Packet(msg.data)
 8         eth = pkt.get_protocols(ethernet.ethernet)[0]
 9 
10         if eth.ethertype == ether_types.ETH_TYPE_LLDP:
11             # ignore lldp packet
12             return
13         dst = eth.dst
14         src = eth.src
15 
16         dpid = datapath.id
17         self.mac_to_port.setdefault(dpid, {})
18 
19         self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

  這里是從接收到的Packet_In報文中取出各種信息,如果報文時lldp報文,忽略它。隨后用此dpid(交換機id)初始化mac_to_port,並在日志打印此Packet_In的基本信息。

1  # learn a mac address to avoid FLOOD next time.
2  self.mac_to_port[dpid][src] = in_port

  這一段代碼是交換機自學習,類似傳統二層交換機的MAC地址表自學習,取來往數據包的交換機id、源mac和入端口綁定來構造表。

  以下是最后一段代碼:

 1         if dst in self.mac_to_port[dpid]://若在表中找到出端口信息,指示出端口
 2             out_port = self.mac_to_port[dpid][dst]
 3         else://否則泛洪
 4             out_port = ofproto.OFPP_FLOOD
 5 
 6         actions = [parser.OFPActionOutput(out_port)]
 7 
 8         # install a flow to avoid packet_in next time 創建流表項來避免再次收到Packet_in報文
 9         if out_port != ofproto.OFPP_FLOOD:
10             match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
11             # verify if we have a valid buffer_id, if yes avoid to send both
12             # flow_mod & packet_out
13             if msg.buffer_id != ofproto.OFP_NO_BUFFER://有buffer_id,帶上buffer_id,然后只發送Flow_mod報文,因為交換機已經有緩存數據包,就不需要發送packet_out報文
14                 self.add_flow(datapath, 1, match, actions, msg.buffer_id) //add_flow函數內部就已發送了Flow_mod報文。,后面不用send_msg()
15                 return
16             else://若沒有buffer_id,發送的Flow_Mod報文就無需要帶上buffer_id,但是下一步要再發送一個Packet_out報文帶上原數據包信息。
17                 self.add_flow(datapath, 1, match, actions)
18         data = None
19         if msg.buffer_id == ofproto.OFP_NO_BUFFER:
20             data = msg.data
21      //發送Packet_out數據包 帶上交換機發來的數據包的信息
22         out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
23                                   in_port=in_port, actions=actions, data=data)
24         datapath.send_msg(out)

  以上代碼說明,若在字典中有找到對應的出端口,動作就指定為發送給某一個端口,並且檢查交換機發來的數據包是否有buffer_id,若有buffer_id則發送Flow_mod報文並帶上buffer_id,若沒有buffer_id則發送Flow_mod報文不帶上buffer_id。若字典中找不到出端口,則動作為泛洪。最后,如果交換機發來的數據包沒有buffer_id,則要回復一個Packet_out報文並帶上原數據包的信息。

  至此,此篇分析結束。

 

 

  

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM