ubuntu鏡像地址:https://pan.baidu.com/s/1qYN_MtUboPmruHda1DgrTA 提取碼:mhfi
本實驗分兩個部分
實驗一使用命令行啟動控制器,使用simple_switch_13.py組件查看效果,實驗二對simple_switch_13.py進行分析。
一、實驗一
參考:https://blog.csdn.net/caiqiiqi/article/details/79698143
1、創建拓撲
參數說明:
--controller 自己指定一個控制器,一般用remote指定遠程控制器。還可以用--ip 與 --port 指定地址和端口號
--mac 自動設置mac地址,並讓其從小到大排列
--switch 設置交換機的類型。交換機分為內核型(lxbr),用戶型(user),OVS型(ovsk,ovsbr,ivs)。內核型和OVS型比用戶型吞吐量大的多,常被選用。
-x 打開所有節點的終端
2、設置交換機s1上的OpenFlow版本並查看流表
3、執行ryu控制器
參數說明:
--verbose:顯示調試信息
ryu.app.simple_switch_13為提供了傳統2層交換機策略的組件。其他組件見下圖
調試信息中,
EVENT ofp_event->SimpleSwitch13 EventOFPSwitchFeatures
switch features ev version=0x4,msg_type=0x6,msg_len=0x20,xid=0x99ea8d54,OFPSwitchFeatures(auxiliary_id=0,capabilities=79,datapath_id=1,n_buffers=256,n_tables=254)
這里是獲取交換機的特征的過程,會在其他隨筆里具體分析。
對以上幾個字段分析:
在ryu/ryu/lib/packet/openflow.py 可查看基本屬性的意義。
在ryu/ryu/ofproto/ofproto_v1_3.py可查看各類型的值的意義。
屬性 | 值 | 意義 |
version | 0x4 | OpenFlow1.3版本 |
msg_type | 0x6 | 這是OPEN_FEATURE_REPLY報文 |
msg_len | 0x20 | 報文長度 |
xid | 0x99ea8d54 | 交互的編號 |
4、查看交換機s1流表,發現多了一條Table-miss的流表項。
存在時長11秒,表號為0,匹配數據包22個,匹配字節數1764B,優先級為0(最低),動作為發送到控制器,65535表示不緩存數據包(OFP_NO_BUFFER)。
5、用h1 ping h2,並用wireshark抓包詳細過程
- h1 ping h2過程:
1). h1 -> ff:ff:ff:ff:ff:ff(廣播) ARP Request, 查詢h2的MAC地址;
2). h2-> h1 ARP Reply, 響應h2的MAC地址;
3). h1-> h2 ICMP echo request;
4). h2-> h1 ICMP echo reply
- 詳細過程分析:
(1)h1 發送ARP請求報文,源mac為h1mac,目的mac為ffffffffffff,交換機未匹配到流表項,向控制器發送Packet_In報文(編號1440)。
(2)控制器將入端口1與h1的mac地址綁定,並回復Packet_Out報文給交換機,讓其執行FLOOD(泛洪)操作,交換機向除了入端口以外的端口泛洪ARP請求報文(編號1441)。
(3)h2接收到ARP請求報文,回復ARP應答報文,源mac為h2mac,目的mac為h1mac,交換機未匹配到流表項,向控制器發送Packet_In報文(編號1446).
(4)控制器將入端口2與h2的mac地址綁定,再看交換機送來的數據包,發現源mac(h2mac)和目的mac(h1mac)都已經和入端口綁定,所以可以下發一條流表項(Flow_Mod報文):
FlowEntry1:源地址:h2mac,目的地址:h1mac,動作:output 1 (從端口1發出)(編號1447)
(5)h1收到ARP應答報文后,開始向h2發送ICMP請求數據包,數據包發送至交換機時,交換機s1未匹配到流表項,向控制器發送Packet_In報文。(編號1450)
(6)控制器查看交換機發來的數據包,發現源mac(h1mac)和目的mac(h2mac)都已經和入端口綁定,所以可以下發一條流表項(Flow_Mod報文):
FlowEntry2:源地址:h1mac,目的地址:h2mac,動作:output 2 (從端口2發出)(編號1451)
(7)交換機按流表項轉發ICMP請求/應答數據包,ping過程順利完成。
6、查看交換機流表項和控制器日志
交換機多了2條流表項,源mac地址分別為h1和h2,目的mac為h2和h1,優先級為1,入端口分別為1和2,動作分別為從2/1端口發出,這也就是由ping生成的流表項。第二條流表項匹配數據包數比第一條少1的原因是h1一開始發的ARP請求是廣播形式,所以dst_mac為ff:ff:ff:ff:ff:ff,而不是00:00:00:00:00:01。
同樣,在控制器的Log日志里也寫明了觸發了多次Packet_In事件,由上述的分析說明最后3次Packet_In事件是由這次ping觸發的,第一次為 h1的ARP請求報文觸發的,第二次由ARP回復報文觸發的,第三次是h1給h2發送ICMP請求報文觸發的。
二、實驗二 分析simple_switch_13.py
參考:https://blog.csdn.net/xiajx98/article/details/92798847
1、simple_switch_13.py在ryu/ryu/app目錄下,以下是完整代碼:
1 # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 12 # implied. 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 15 16 from ryu.base import app_manager 17 from ryu.controller import ofp_event 18 from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER 19 from ryu.controller.handler import set_ev_cls 20 from ryu.ofproto import ofproto_v1_3 21 from ryu.lib.packet import packet 22 from ryu.lib.packet import ethernet 23 from ryu.lib.packet import ether_types 24 25 26 class SimpleSwitch13(app_manager.RyuApp): 27 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 28 29 def __init__(self, *args, **kwargs): 30 super(SimpleSwitch13, self).__init__(*args, **kwargs) 31 self.mac_to_port = {} 32 33 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 34 def switch_features_handler(self, ev): 35 datapath = ev.msg.datapath 36 ofproto = datapath.ofproto 37 parser = datapath.ofproto_parser 38 39 # install table-miss flow entry 40 # 41 # We specify NO BUFFER to max_len of the output action due to 42 # OVS bug. At this moment, if we specify a lesser number, e.g., 43 # 128, OVS will send Packet-In with invalid buffer_id and 44 # truncated packet data. In that case, we cannot output packets 45 # correctly. The bug has been fixed in OVS v2.1.0. 46 match = parser.OFPMatch() 47 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 48 ofproto.OFPCML_NO_BUFFER)] 49 self.add_flow(datapath, 0, match, actions) 50 51 def add_flow(self, datapath, priority, match, actions, buffer_id=None): 52 ofproto = datapath.ofproto 53 parser = datapath.ofproto_parser 54 55 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 56 actions)] 57 if buffer_id: 58 mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, 59 priority=priority, match=match, 60 instructions=inst) 61 else: 62 mod = parser.OFPFlowMod(datapath=datapath, priority=priority, 63 match=match, instructions=inst) 64 datapath.send_msg(mod) 65 66 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 67 def _packet_in_handler(self, ev): 68 # If you hit this you might want to increase 69 # the "miss_send_length" of your switch 70 if ev.msg.msg_len < ev.msg.total_len: 71 self.logger.debug("packet truncated: only %s of %s bytes", 72 ev.msg.msg_len, ev.msg.total_len) 73 msg = ev.msg 74 datapath = msg.datapath 75 ofproto = datapath.ofproto 76 parser = datapath.ofproto_parser 77 in_port = msg.match['in_port'] 78 79 pkt = packet.Packet(msg.data) 80 eth = pkt.get_protocols(ethernet.ethernet)[0] 81 82 if eth.ethertype == ether_types.ETH_TYPE_LLDP: 83 # ignore lldp packet 84 return 85 dst = eth.dst 86 src = eth.src 87 88 dpid = datapath.id 89 self.mac_to_port.setdefault(dpid, {}) 90 91 self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) 92 93 # learn a mac address to avoid FLOOD next time. 94 self.mac_to_port[dpid][src] = in_port 95 96 if dst in self.mac_to_port[dpid]: 97 out_port = self.mac_to_port[dpid][dst] 98 else: 99 out_port = ofproto.OFPP_FLOOD 100 101 actions = [parser.OFPActionOutput(out_port)] 102 103 # install a flow to avoid packet_in next time 104 if out_port != ofproto.OFPP_FLOOD: 105 match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) 106 # verify if we have a valid buffer_id, if yes avoid to send both 107 # flow_mod & packet_out 108 if msg.buffer_id != ofproto.OFP_NO_BUFFER: 109 self.add_flow(datapath, 1, match, actions, msg.buffer_id) 110 return 111 else: 112 self.add_flow(datapath, 1, match, actions) 113 data = None 114 if msg.buffer_id == ofproto.OFP_NO_BUFFER: 115 data = msg.data 116 117 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, 118 in_port=in_port, actions=actions, data=data) 119 datapath.send_msg(out)
2、分段代碼
1 class SimpleSwitch13(app_manager.RyuApp):
繼承了ryu.base.app_manager
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.mac_to_port = {}
OFP_VERSIONS是指OpenFlow版本,這里調取了在ofproto_v1_3.py里聲明的靜態變量OFP_VERSION,值為4,為OpenFlow1.3版本。
self.mac_to_port是一個保存(交換機id, mac地址)到轉發端口的字典。
1 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) 2 def switch_features_handler(self, ev): 3 datapath = ev.msg.datapath 4 ofproto = datapath.ofproto 5 parser = datapath.ofproto_parser 6 7 match = parser.OFPMatch() 8 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 9 ofproto.OFPCML_NO_BUFFER)] 10 self.add_flow(datapath, 0, match, actions)
這是利用了一個裝飾器實現了對事件的控制。這里要了解兩個知識,控制器事件和控制器狀態。
控制器事件(Event),Event具體見ryu/controller/ofp_event.py,其事件名稱是由接收到的報文類型來命名的,名字為Event+報文類型,例如本例中,控制器收到的是交換機發送的FEATURE_REPLY報文,所以事件名稱為EventOFPSwitchFeatures。所以本事件其實就是當控制器接收到FEATURE_REPLY報文觸發。
控制器狀態:ryu控制器和交換機交互有4個階段,詳見ryu/ryu/controller/handler.py
4個狀態:
- HANDSHAKE_DISPATCHER:發送Hello報文並等待對端Hello報文。
- CONFIG_DISPATCHER:協商版本並發送FEATURE-REQUEST報文。
- MAIN_DISPATCHER:已收到FEATURE-REPLY報文並發送SET-CONFIG報文。
- DEAD_DISPATCHER:與對端斷開連接。
綜上,以上代碼說明了當控制器處於CONFIG_DISPATCHER狀態並且接受到FEATURE_REPLY報文時,執行switch_features_handler()函數。
再來看函數中的內容:
1 def switch_features_handler(self, ev): 2 3 datapath = ev.msg.datapath 3 4 ofproto = datapath.ofproto 4 5 parser = datapath.ofproto_parser 5 6 6 7 match = parser.OFPMatch() 7 8 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, 8 9 ofproto.OFPCML_NO_BUFFER)] 9 10 self.add_flow(datapath, 0, match, actions)
datapath存儲交換機的信息,match指流表項匹配,這里OFPMatch()指不匹配任何信息,actions是動作,表示匹配成功不緩存數據包並發送給控制器。最后add_flow是添加流表項的函數,我們在完整代碼中可以看到add_flow調用了send_msg(mod)說明這里會發出Flow_Mod報文,所以上述過程就是下發Table-miss流表項的過程。
1 def add_flow(self, datapath, priority, match, actions, buffer_id=None): 2 ofproto = datapath.ofproto 3 parser = datapath.ofproto_parser 4 5 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, 6 actions)]//立即執行動作,各靜態變量說明見 ryu/ryu/ofproto/ofproto_v1_3.py 7 if buffer_id: 8 mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, 9 priority=priority, match=match, 10 instructions=inst) 11 else: 12 mod = parser.OFPFlowMod(datapath=datapath, priority=priority, 13 match=match, instructions=inst) 14 datapath.send_msg(mod)
add_flow()函數作用是增加流表項,參數有datapath,優先級,匹配項,動作,buffer_id。上述代碼說明了,此流表項匹配成功后應立即執行所規定的動作。如果此函數參數有buffer_id(就是交換機發送來的數據包有buffer_id,即交換機有緩存),那發送的Flow_Mod報文就帶上buffer_id,若沒有buffer_id,buffer_id就是None。最后,發出Flow_Mod報文,所以添加流表項是通過Flow_Mod報文實現。
1 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 2 def _packet_in_handler(self, ev):
這段代碼說明了控制器在MAIN_DISPATCHER狀態並且觸發Packet_In事件時調用_packet_in_handler函數。
# If you hit this you might want to increase # the "miss_send_length" of your switch if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len)
這段代碼是指傳輸出錯,打印debug信息。
1 msg = ev.msg 2 datapath = msg.datapath 3 ofproto = datapath.ofproto 4 parser = datapath.ofproto_parser 5 in_port = msg.match['in_port'] 6 7 pkt = packet.Packet(msg.data) 8 eth = pkt.get_protocols(ethernet.ethernet)[0] 9 10 if eth.ethertype == ether_types.ETH_TYPE_LLDP: 11 # ignore lldp packet 12 return 13 dst = eth.dst 14 src = eth.src 15 16 dpid = datapath.id 17 self.mac_to_port.setdefault(dpid, {}) 18 19 self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
這里是從接收到的Packet_In報文中取出各種信息,如果報文時lldp報文,忽略它。隨后用此dpid(交換機id)初始化mac_to_port,並在日志打印此Packet_In的基本信息。
1 # learn a mac address to avoid FLOOD next time. 2 self.mac_to_port[dpid][src] = in_port
這一段代碼是交換機自學習,類似傳統二層交換機的MAC地址表自學習,取來往數據包的交換機id、源mac和入端口綁定來構造表。
以下是最后一段代碼:
1 if dst in self.mac_to_port[dpid]://若在表中找到出端口信息,指示出端口 2 out_port = self.mac_to_port[dpid][dst] 3 else://否則泛洪 4 out_port = ofproto.OFPP_FLOOD 5 6 actions = [parser.OFPActionOutput(out_port)] 7 8 # install a flow to avoid packet_in next time 創建流表項來避免再次收到Packet_in報文 9 if out_port != ofproto.OFPP_FLOOD: 10 match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) 11 # verify if we have a valid buffer_id, if yes avoid to send both 12 # flow_mod & packet_out 13 if msg.buffer_id != ofproto.OFP_NO_BUFFER://有buffer_id,帶上buffer_id,然后只發送Flow_mod報文,因為交換機已經有緩存數據包,就不需要發送packet_out報文 14 self.add_flow(datapath, 1, match, actions, msg.buffer_id) //add_flow函數內部就已發送了Flow_mod報文。,后面不用send_msg() 15 return 16 else://若沒有buffer_id,發送的Flow_Mod報文就無需要帶上buffer_id,但是下一步要再發送一個Packet_out報文帶上原數據包信息。 17 self.add_flow(datapath, 1, match, actions) 18 data = None 19 if msg.buffer_id == ofproto.OFP_NO_BUFFER: 20 data = msg.data 21 //發送Packet_out數據包 帶上交換機發來的數據包的信息 22 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, 23 in_port=in_port, actions=actions, data=data) 24 datapath.send_msg(out)
以上代碼說明,若在字典中有找到對應的出端口,動作就指定為發送給某一個端口,並且檢查交換機發來的數據包是否有buffer_id,若有buffer_id則發送Flow_mod報文並帶上buffer_id,若沒有buffer_id則發送Flow_mod報文不帶上buffer_id。若字典中找不到出端口,則動作為泛洪。最后,如果交換機發來的數據包沒有buffer_id,則要回復一個Packet_out報文並帶上原數據包的信息。
至此,此篇分析結束。