一 read_only_allow_delete" : "true"
當我們在向某個索引添加一條數據的時候,可能(極少情況)會碰到下面的報錯:
{
"error": {
"root_cause": [
{
"type": "cluster_block_exception",
"reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
}
],
"type": "cluster_block_exception",
"reason": "blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
},
"status": 403
}
上述報錯是說索引現在的狀態是只讀模式(read-only),如果查看該索引此時的狀態:
GET z1/_settings
# 結果如下
{
"z1" : {
"settings" : {
"index" : {
"number_of_shards" : "5",
"blocks" : {
"read_only_allow_delete" : "true"
},
"provided_name" : "z1",
"creation_date" : "1556204559161",
"number_of_replicas" : "1",
"uuid" : "3PEevS9xSm-r3tw54p0o9w",
"version" : {
"created" : "6050499"
}
}
}
}
}
可以看到"read_only_allow_delete" : "true"
,說明此時無法插入數據,當然,我們也可以模擬出來這個錯誤:
PUT z1
{
"mappings": {
"doc": {
"properties": {
"title": {
"type":"text"
}
}
}
},
"settings": {
"index.blocks.read_only_allow_delete": true
}
}
PUT z1/doc/1
{
"title": "es真難學"
}
現在我們如果執行插入數據,就會報開始的錯誤。那么怎么解決呢?
- 清理磁盤,使占用率低於85%。
- 手動調整該項,具體參考官網
這里介紹一種,我們將該字段重新設置為:
PUT z1/_settings
{
"index.blocks.read_only_allow_delete": null
}
現在再查看該索引就正常了,也可以正常的插入數據和查詢了。
二 illegal_argument_exception
有時候,在聚合中,我們會發現如下報錯:
{
"error": {
"root_cause": [
{
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
}
],
"type": "search_phase_execution_exception",
"reason": "all shards failed",
"phase": "query",
"grouped": true,
"failed_shards": [
{
"shard": 0,
"index": "z2",
"node": "NRwiP9PLRFCTJA7w3H9eqA",
"reason": {
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
}
}
],
"caused_by": {
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead.",
"caused_by": {
"type": "illegal_argument_exception",
"reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [age] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
}
}
},
"status": 400
}
這是怎么回事呢?是因為,聚合查詢時,指定字段不能是text
類型。比如下列示例:
PUT z2/doc/1
{
"age":"18"
}
PUT z2/doc/2
{
"age":20
}
GET z2/doc/_search
{
"query": {
"match_all": {}
},
"aggs": {
"my_sum": {
"sum": {
"field": "age"
}
}
}
}
當我們向elasticsearch
中,添加一條數據時(此時,如果索引存在則直接新增或者更新文檔,不存在則先創建索引),首先檢查該age
字段的映射類型。如上示例中,我們添加第一篇文檔時(z1
索引不存在),elasticsearch
會自動的創建索引,然后為age
字段創建映射關系(es就猜此時age
字段的值是什么類型,如果發現是text
類型,那么存儲該字段的映射類型就是text
),此時age
字段的值是text
類型,所以,第二條插入數據,age
的值也是text
類型,而不是我們看到的long
類型。我們可以查看一下該索引的mappings
信息:
GET z2/_mapping
# mapping信息如下
{
"z2" : {
"mappings" : {
"doc" : {
"properties" : {
"age" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
}
上述返回結果發現,age
類型是text
。而該類型又不支持聚合,所以,就會報錯了。解決辦法就是:
- 如果選擇動態創建一篇文檔,映射關系取決於你添加的第一條文檔的各字段都對應什么類型。而不是我們看到的那樣,第一次是
text
,第二次不加引號,就是long
類型了不是這樣的。 - 如果嫌棄上面的解決辦法麻煩,那就選擇手動創建映射關系。首先指定好各字段對應什么類型。后續才不至於出錯。
三 Result window is too large
很多時候,我們在查詢文檔時,一次查詢結果很可能會有很多,而elasticsearch一次返回多少條結果,由size
參數決定:
GET e2/doc/_search
{
"size": 100000,
"query": {
"match_all": {}
}
}
而默認是最多范圍一萬條,那么當我們的請求超過一萬條時(比如有十萬條),就會報:
Result window is too large, from + size must be less than or equal to: [10000] but was [100000]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting.
意思是一次請求返回的結果太大,可以另行參考 scroll API
或者設置index.max_result_window
參數手動調整size
的最大默認值:
# kibana中設置
PUT e2/_settings
{
"index": {
"max_result_window": "100000"
}
}
# Python中設置
from elasticsearch import Elasticsearch
es = Elasticsearch()
es.indices.put_settings(index='e2', body={"index": {"max_result_window": 100000}})
如上例,我們手動調整索引e2
的size
參數最大默認值到十萬,這時,一次查詢結果只要不超過10萬就都會一次返回。
注意,這個設置對於索引es
的size
參數是永久生效的。