1.手寫數字數據集
- from sklearn.datasets import load_digits
- digits = load_digits()
#導入手寫數字數據集
from sklearn.datasets import load_digits import numpy as np digits = load_digits()
2.圖片數據預處理
- x:歸一化MinMaxScaler()
- y:獨熱編碼OneHotEncoder()或to_categorical
- 訓練集測試集划分
- 張量結構
# 歸一化MinMaxScaler()
from sklearn.preprocessing import MinMaxScaler
X_data = digits.data.astype(np.float32)
scaler = MinMaxScaler()
X_data = scaler.fit_transform(X_data)
print("歸一化后",X_data)
# 轉化為圖片的格式
X=X_data.reshape(-1,8,8,1)

獨熱編碼:
# 獨熱編碼
from sklearn.preprocessing import OneHotEncoder
# y = digits.target.reshape(-1,1)
#將Y_data變為一列
y = digits.target.astype(np.float32).reshape(-1,1)
Y = OneHotEncoder().fit_transform(y).todense() #張量結構todense
print("獨熱編碼:",Y)
# 切分數據集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
print(X_train,X_test,y_train,y_test)
print("X_data.shape:",X_data.shape)
print("X.shape",X.shape)

3.設計卷積神經網絡結構
- 繪制模型結構圖,並說明設計依據。
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten #3、建立模型 model = Sequential() ks = (3, 3) # 卷積核的大小 input_shape = X_train.shape[1:] # 一層卷積,padding='same',tensorflow會對輸入自動補0 model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu')) # 池化層1 model.add(MaxPool2D(pool_size=(2, 2))) # 防止過擬合,隨機丟掉連接 model.add(Dropout(0.25)) # 二層卷積 model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu')) # 池化層2 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 三層卷積 model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu')) # 四層卷積 model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu')) # 池化層3 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 平坦層 model.add(Flatten()) # 全連接層 model.add(Dense(128, activation='relu')) model.add(Dropout(0.25)) # 激活函數softmax model.add(Dense(10, activation='softmax')) print(model.summary())

4.模型訓練
import matplotlib.pyplot as plt
# 畫圖
def show_train_history(train_history, train, validation):
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title('Train History')
plt.ylabel('train')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# 4、模型訓練
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
# 准確率
show_train_history(train_history, 'accuracy', 'val_accuracy')
# 損失率
show_train_history(train_history, 'loss', 'val_loss')


5.模型評價
- model.evaluate()
- 交叉表與交叉矩陣
- pandas.crosstab
- seaborn.heatmap
import pandas as pd
import seaborn as sns
# model.evaluate()
score = model.evaluate(X_test, y_test)
print('score:', score)
# 預測值
y_pred = model.predict_classes(X_test)
print('y_pred:', y_pred[:10])
# 交叉表與交叉矩陣
y_test1 = np.argmax(y_test, axis=1).reshape(-1)
y_true = np.array(y_test1)[0]
# 交叉表查看預測數據與原數據對比
# pandas.crosstab
pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
# 交叉矩陣
# seaborn.heatmap
y_test1 = y_test1.tolist()[0]
a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
# 轉換成屬dataframe
df = pd.DataFrame(a)
sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
plt.show()

