# Classes and methods whitelist
core
= {
''
: [
'absdiff',
'add',
'addWeighted',
'bitwise_and',
'bitwise_not',
'bitwise_or',
'bitwise_xor',
'cartToPolar',\
'compare',
'convertScaleAbs',
'copyMakeBorder',
'countNonZero',
'determinant',
'dft',
'divide',
'eigen', \
'exp',
'flip',
'getOptimalDFTSize',
'gemm',
'hconcat',
'inRange',
'invert',
'kmeans',
'log',
'magnitude', \
'max',
'mean',
'meanStdDev',
'merge',
'min',
'minMaxLoc',
'mixChannels',
'multiply',
'norm',
'normalize', \
'perspectiveTransform',
'polarToCart',
'pow',
'randn',
'randu',
'reduce',
'repeat',
'rotate',
'setIdentity',
'setRNGSeed', \
'solve',
'solvePoly',
'split',
'sqrt',
'subtract',
'trace',
'transform',
'transpose',
'vconcat'],
'Algorithm'
: []}
imgproc
= {
''
: [
'Canny',
'GaussianBlur',
'Laplacian',
'HoughLines',
'HoughLinesP',
'HoughCircles',
'Scharr',
'Sobel', \
'adaptiveThreshold',
'approxPolyDP',
'arcLength',
'bilateralFilter',
'blur',
'boundingRect',
'boxFilter',\
'calcBackProject',
'calcHist',
'circle',
'compareHist',
'connectedComponents',
'connectedComponentsWithStats', \
'contourArea',
'convexHull',
'convexityDefects',
'cornerHarris',
'cornerMinEigenVal',
'createCLAHE', \
'createLineSegmentDetector',
'cvtColor',
'demosaicing',
'dilate',
'distanceTransform',
'distanceTransformWithLabels', \
'drawContours',
'ellipse',
'ellipse2Poly',
'equalizeHist',
'erode',
'filter2D',
'findContours',
'fitEllipse', \
'fitLine',
'floodFill',
'getAffineTransform',
'getPerspectiveTransform',
'getRotationMatrix2D',
'getStructuringElement', \
'goodFeaturesToTrack',
'grabCut',
'initUndistortRectifyMap',
'integral',
'integral2',
'isContourConvex',
'line', \
'matchShapes',
'matchTemplate',
'medianBlur',
'minAreaRect',
'minEnclosingCircle',
'moments',
'morphologyEx', \
'pointPolygonTest',
'putText',
'pyrDown',
'pyrUp',
'rectangle',
'remap',
'resize',
'sepFilter2D',
'threshold', \
'undistort',
'warpAffine',
'warpPerspective',
'warpPolar',
'watershed', \
'fillPoly',
'fillConvexPoly'],
'CLAHE'
: [
'apply',
'collectGarbage',
'getClipLimit',
'getTilesGridSize',
'setClipLimit',
'setTilesGridSize']}
objdetect
= {
''
: [
'groupRectangles'],
'HOGDescriptor'
: [
'load',
'HOGDescriptor',
'getDefaultPeopleDetector',
'getDaimlerPeopleDetector',
'setSVMDetector',
'detectMultiScale'],
'CascadeClassifier'
: [
'load',
'detectMultiScale2',
'CascadeClassifier',
'detectMultiScale3',
'empty',
'detectMultiScale']}
video
= {
''
: [
'CamShift',
'calcOpticalFlowFarneback',
'calcOpticalFlowPyrLK',
'createBackgroundSubtractorMOG2', \
'findTransformECC',
'meanShift'],
'BackgroundSubtractorMOG2'
: [
'BackgroundSubtractorMOG2',
'apply'],
'BackgroundSubtractor'
: [
'apply',
'getBackgroundImage']}
dnn
= {
'dnn_Net'
: [
'setInput',
'forward'],
''
: [
'readNetFromCaffe',
'readNetFromTensorflow',
'readNetFromTorch',
'readNetFromDarknet',
'readNetFromONNX',
'readNet',
'blobFromImage']}
features2d
= {
'Feature2D'
: [
'detect',
'compute',
'detectAndCompute',
'descriptorSize',
'descriptorType',
'defaultNorm',
'empty',
'getDefaultName'],
'BRISK'
: [
'create',
'getDefaultName'],
'ORB'
: [
'create',
'setMaxFeatures',
'setScaleFactor',
'setNLevels',
'setEdgeThreshold',
'setFirstLevel',
'setWTA_K',
'setScoreType',
'setPatchSize',
'getFastThreshold',
'getDefaultName'],
'MSER'
: [
'create',
'detectRegions',
'setDelta',
'getDelta',
'setMinArea',
'getMinArea',
'setMaxArea',
'getMaxArea',
'setPass2Only',
'getPass2Only',
'getDefaultName'],
'FastFeatureDetector'
: [
'create',
'setThreshold',
'getThreshold',
'setNonmaxSuppression',
'getNonmaxSuppression',
'setType',
'getType',
'getDefaultName'],
'AgastFeatureDetector'
: [
'create',
'setThreshold',
'getThreshold',
'setNonmaxSuppression',
'getNonmaxSuppression',
'setType',
'getType',
'getDefaultName'],
'GFTTDetector'
: [
'create',
'setMaxFeatures',
'getMaxFeatures',
'setQualityLevel',
'getQualityLevel',
'setMinDistance',
'getMinDistance',
'setBlockSize',
'getBlockSize',
'setHarrisDetector',
'getHarrisDetector',
'setK',
'getK',
'getDefaultName'],
# 'SimpleBlobDetector': ['create'],
'KAZE'
: [
'create',
'setExtended',
'getExtended',
'setUpright',
'getUpright',
'setThreshold',
'getThreshold',
'setNOctaves',
'getNOctaves',
'setNOctaveLayers',
'getNOctaveLayers',
'setDiffusivity',
'getDiffusivity',
'getDefaultName'],
'AKAZE'
: [
'create',
'setDescriptorType',
'getDescriptorType',
'setDescriptorSize',
'getDescriptorSize',
'setDescriptorChannels',
'getDescriptorChannels',
'setThreshold',
'getThreshold',
'setNOctaves',
'getNOctaves',
'setNOctaveLayers',
'getNOctaveLayers',
'setDiffusivity',
'getDiffusivity',
'getDefaultName'],
'DescriptorMatcher'
: [
'add',
'clear',
'empty',
'isMaskSupported',
'train',
'match',
'knnMatch',
'radiusMatch',
'clone',
'create'],
'BFMatcher'
: [
'isMaskSupported',
'create'],
''
: [
'drawKeypoints',
'drawMatches',
'drawMatchesKnn']}
photo
= {
''
: [
'createAlignMTB',
'createCalibrateDebevec',
'createCalibrateRobertson', \
'createMergeDebevec',
'createMergeMertens',
'createMergeRobertson', \
'createTonemapDrago',
'createTonemapMantiuk',
'createTonemapReinhard',
'inpaint'],
'CalibrateCRF'
: [
'process'],
'AlignMTB'
: [
'calculateShift',
'shiftMat',
'computeBitmaps',
'getMaxBits',
'setMaxBits', \
'getExcludeRange',
'setExcludeRange',
'getCut',
'setCut'],
'CalibrateDebevec'
: [
'getLambda',
'setLambda',
'getSamples',
'setSamples',
'getRandom',
'setRandom'],
'CalibrateRobertson'
: [
'getMaxIter',
'setMaxIter',
'getThreshold',
'setThreshold',
'getRadiance'],
'MergeExposures'
: [
'process'],
'MergeDebevec'
: [
'process'],
'MergeMertens'
: [
'process',
'getContrastWeight',
'setContrastWeight',
'getSaturationWeight', \
'setSaturationWeight',
'getExposureWeight',
'setExposureWeight'],
'MergeRobertson'
: [
'process'],
'Tonemap'
: [
'process' ,
'getGamma',
'setGamma'],
'TonemapDrago'
: [
'getSaturation',
'setSaturation',
'getBias',
'setBias', \
'getSigmaColor',
'setSigmaColor',
'getSigmaSpace',
'setSigmaSpace'],
'TonemapMantiuk'
: [
'getScale',
'setScale',
'getSaturation',
'setSaturation'],
'TonemapReinhard'
: [
'getIntensity',
'setIntensity',
'getLightAdaptation',
'setLightAdaptation', \
'getColorAdaptation',
'setColorAdaptation']
}
aruco
= {
''
: [
'detectMarkers',
'drawDetectedMarkers',
'drawAxis',
'estimatePoseSingleMarkers',
'estimatePoseBoard',
'estimatePoseCharucoBoard',
'interpolateCornersCharuco',
'drawDetectedCornersCharuco'],
'aruco_Dictionary'
: [
'get',
'drawMarker'],
'aruco_Board'
: [
'create'],
'aruco_GridBoard'
: [
'create',
'draw'],
'aruco_CharucoBoard'
: [
'create',
'draw'],
}
calib3d
= {
''
: [
'findHomography',
'calibrateCameraExtended',
'drawFrameAxes',
'estimateAffine2D',
'getDefaultNewCameraMatrix',
'initUndistortRectifyMap',
'Rodrigues']}
white_list
= makeWhiteList([core, imgproc, objdetect, video, dnn, features2d, photo, aruco, calib3d])
但是我們仍然可以通過輪廓分析的相關方法,去實現“基於opencv.js實現二維碼定位”,這就是本篇BLOG的主要內容。
一、基本原理
主要內容請參考《OpenCV使用FindContours進行二維碼定位》,這里重要的回顧一下。
使
用過FindContours直接尋找聯通區域的函數。
典型的運用在二維碼上面:
對於它的3個定位點
,這種重復包含的特性,在圖上只有
不容易重復的
三處,這是具有排它性的。

那么輪廓識別的結果是如何展示的了?比如
在這幅圖中(白色區域為有數據的區域,黑色為無數據),0,1,2是第一層,然后里面是3,3的里面是4和5。(2a表示是2的內部),他們的關系應該是這樣的:
所以我們只需要尋找某一個輪廓“有無爺爺輪廓”,就可以判斷出來它是否“重復包含”
值得參考的C++代碼應該是這樣的,其中注釋部分已經說明的比較清楚。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
using namespace cv;
using namespace std;
//找到所提取輪廓的中心點
//在提取的中心小正方形的邊界上每隔周長個像素提取一個點的坐標,求所提取四個點的平均坐標(即為小正方形的大致中心)
Point Center_cal(vector<vector<Point> > contours,int i)
{
int centerx=0,centery=0,n=contours[i].size();
centerx = (contours[i][n/4].x + contours[i][n*2/4].x + contours[i][3*n/4].x + contours[i][n-1].x)/4;
centery = (contours[i][n/4].y + contours[i][n*2/4].y + contours[i][3*n/4].y + contours[i][n-1].y)/4;
Point point1=Point(centerx,centery);
return point1;
}
int main( int argc, char** argv[] )
{
Mat src = imread( "e:/sandbox/qrcode.jpg", 1 );
resize(src,src,Size(800,600));//標准大小
Mat src_gray;
Mat src_all=src.clone();
Mat threshold_output;
vector<vector<Point> > contours,contours2;
vector<Vec4i> hierarchy;
//預處理
cvtColor( src, src_gray, CV_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) ); //模糊,去除毛刺
threshold( src_gray, threshold_output, 100, 255, THRESH_OTSU );
//尋找輪廓
//第一個參數是輸入圖像 2值化的
//第二個參數是內存存儲器,FindContours找到的輪廓放到內存里面。
//第三個參數是層級,**[Next, Previous, First_Child, Parent]** 的vector
//第四個參數是類型,采用樹結構
//第五個參數是節點擬合模式,這里是全部尋找
findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) );
//輪廓篩選
int c=0,ic=0,area=0;
int parentIdx=-1;
for( int i = 0; i< contours.size(); i++ )
{
//hierarchy[i][2] != -1 表示不是最外面的輪廓
if (hierarchy[i][2] != -1 && ic==0)
{
parentIdx = i;
ic++;
}
else if (hierarchy[i][2] != -1)
{
ic++;
}
//最外面的清0
else if(hierarchy[i][2] == -1)
{
ic = 0;
parentIdx = -1;
}
//找到定位點信息
if ( ic >= 2)
{
contours2.push_back(contours[parentIdx]);
ic = 0;
parentIdx = -1;
}
}
//填充定位點
for(int i=0; i<contours2.size(); i++)
drawContours( src_all, contours2, i, CV_RGB(0,255,0) , -1 );
//連接定位點
Point point[3];
for(int i=0; i<contours2.size(); i++)
{
point[i] = Center_cal( contours2, i );
}
line(src_all,point[0],point[1],Scalar(0,0,255),2);
line(src_all,point[1],point[2],Scalar(0,0,255),2);
line(src_all,point[0],point[2],Scalar(0,0,255),2);
imshow( "結果", src_all );
waitKey(0);
return(0);
}
二、算法重點
由於
hierarchy
這塊是比較缺乏文檔的,在轉換為JS的過程中存在一定困難,最終得到了以下的正確結果:
<!
DOCTYPE
html
>
<
html
>
<
head
>
<
meta
charset=
"utf-8"
>
<
title
>Hello OpenCV.js
</
title
>
<
script
async
src=
"opencv.js"
onload=
"
onOpenCvReady();
"
type=
"text/javascript"
></
script
>
</
head
>
<
body
>
<
h2
>Hello OpenCV.js
</
h2
>
<
p
id=
"status"
>OpenCV.js is loading...
</
p
>
<
div
>
<
div
class=
"inputoutput"
>
<
img
id=
"imageSrc"
alt=
"No Image"
/>
<
div
class=
"caption"
>imageSrc
<
input
type=
"file"
id=
"fileInput"
name=
"file"
/></
div
>
</
div
>
<
div
class=
"inputoutput"
>
<
canvas
id=
"canvasOutput"
></
canvas
>
<
div
class=
"caption"
>canvasOutput
</
div
>
</
div
>
<
div
class=
"inputoutput2"
>
<
canvas
id=
"canvasOutput2"
></
canvas
>
<
div
class=
"caption"
>canvasOutput2
</
div
>
</
div
>
</
div
>
<
script
type=
"text/javascript"
>
let imgElement = document.getElementById(
'imageSrc');
let inputElement = document.getElementById(
'fileInput');
inputElement.addEventListener(
'change', (e)
=> {
imgElement.src = URL.createObjectURL(e.target.files[
0]);
},
false);
imgElement.onload =
function() {
let src = cv.imread(imgElement);
let src_clone = cv.imread(imgElement);
let dsize =
new cv.Size(
800,
600);
// You can try more different parameters
cv.resize(src, src, dsize);cv.resize(src_clone, src_clone, dsize);
let dst = cv.Mat.zeros(src.rows,src.cols, cv.CV_8UC3);
cv.cvtColor(src, src, cv.COLOR_RGBA2GRAY,
0);
let ksize =
new cv.Size(
3,
3);
// You can try more different parameters
cv.blur(src, src, ksize);
cv.threshold(src, src,
100,
255, cv.THRESH_OTSU);
let contours =
new cv.MatVector();
let contours2 =
new cv.MatVector();
let hierarchy =
new cv.Mat();
// You can try more different parameters
cv.findContours(src, contours, hierarchy, cv.RETR_TREE, cv.CHAIN_APPROX_NONE);
//輪廓篩選
let c=
0,ic=
0,area=
0;
let parentIdx = -
1;
debugger
for(
let i =
0; i< contours.size(); i++ )
{
//let hier = hierarchy.intPtr(0, i)
if (hierarchy.intPtr(
0,i)[
2] != -
1 && ic==
0)
{
parentIdx = i;
ic++;
}
else
if
(hierarchy.intPtr(0,i)[2] != -1)
{
ic++;
}
else
if(hierarchy.intPtr(
0,i)[
2] == -
1)
{
ic =
0;
parentIdx = -
1;
}
//找到定位點信息
if ( ic >=
2)
{
//let cnt = matVec.get(0);
contours2.push_back(contours.get(parentIdx));
ic =
0;
parentIdx = -
1;
}
}
console.log(contours2.size());
//填充定位點
for(
let i=
0; i<contours.size(); i++)
{
let color =
new cv.Scalar(
255,
0,
0,
255);
cv.drawContours(src_clone, contours, i,color,
1);
}
cv.imshow(
'canvasOutput', src_clone);
for(
let i=
0; i<contours2.size(); i++)
{
let color =
new cv.Scalar(Math.round(Math.random() *
255), Math.round(Math.random() *
255),
Math.round(Math.random() *
255));
cv.drawContours(dst, contours2, i, color,
1);
}
cv.imshow(
'canvasOutput2', dst);
src.delete(); src_clone.delete();
dst.delete(); contours.delete(); hierarchy.delete();
};
function onOpenCvReady() {
document.getElementById(
'status').innerHTML =
'OpenCV.js is ready.';
}
</
script
>
</
body
>
</
html
>
其中絕大多數部分都和C++相似,
不同的地方已經標紅。
它能夠成功運行,並且得到正確的定位。(這里OpenCVJS的相關運行情況請參考官方教程)

三、研究收獲
這次研究的關鍵節點, 是建立了Debug機制。在JS代碼中加入debugger語句,並且開啟F12,則在調試的過程中,可以查看各個變量的信息。
此外,非常重要的參考資料,就是OpenCV的官方教程。如果希望進一步進行研究的話,首先需要先收集掌握所有現有資料。
感謝閱讀至此,希望有所幫助。