------------恢復內容開始------------
tf2.0不僅應用的動態圖,在代碼量上比1.4大大優化,安裝相比於tf1.4之類也要簡單一點,特別是有anaconda輔助的時候。
首先是經典anaconda創建環境:
1 conda create -n tf2.0 python=3.7
然后是激活環境:
1 conda activate tf2.0
pip直接安裝tf2.0:
pip install tensorflow-gpu==2.0
成功安裝這些依賴包之后視為安裝完成。針對tf的gpu版本,使用anaconda可以實現多版本的tf共存。在tf2.0環境之下執行如下指令:
1 conda install cudnn=7.6.0 2 conda install cudatoolkit=10.0.130
安裝cudnn和cuda即可。
由於我平常使用pycharm,所以還需要將anaconda的環境導入pycharm中。點擊file->setting->Project:tf2.0->Project Interpreter:
在右上角添加新的conda existing environment:
最后找一個tf2.0的示例程序檢測一下是否成功運行:
from __future__ import absolute_import, division, print_function, unicode_literals # 安裝 TensorFlow import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2)
...
42016/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9772 43136/60000 [====================>.........] - ETA: 0s - loss: 0.0737 - accuracy: 0.9771 44256/60000 [=====================>........] - ETA: 0s - loss: 0.0740 - accuracy: 0.9769 45312/60000 [=====================>........] - ETA: 0s - loss: 0.0742 - accuracy: 0.9767 46432/60000 [======================>.......] - ETA: 0s - loss: 0.0740 - accuracy: 0.9768 47584/60000 [======================>.......] - ETA: 0s - loss: 0.0741 - accuracy: 0.9768 48736/60000 [=======================>......] - ETA: 0s - loss: 0.0739 - accuracy: 0.9769 49824/60000 [=======================>......] - ETA: 0s - loss: 0.0736 - accuracy: 0.9770 50912/60000 [========================>.....] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 52096/60000 [=========================>....] - ETA: 0s - loss: 0.0738 - accuracy: 0.9769 53248/60000 [=========================>....] - ETA: 0s - loss: 0.0736 - accuracy: 0.9769 54272/60000 [==========================>...] - ETA: 0s - loss: 0.0735 - accuracy: 0.9769 55392/60000 [==========================>...] - ETA: 0s - loss: 0.0734 - accuracy: 0.9769 56480/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9770 57568/60000 [===========================>..] - ETA: 0s - loss: 0.0733 - accuracy: 0.9769 58656/60000 [============================>.] - ETA: 0s - loss: 0.0740 - accuracy: 0.9767 59776/60000 [============================>.] - ETA: 0s - loss: 0.0739 - accuracy: 0.9768 60000/60000 [==============================] - 3s 47us/sample - loss: 0.0740 - accuracy: 0.9768 10000/1 - 0s - loss: 0.0387 - accuracy: 0.9776