第7次實踐作業


第7次實踐作業

第19小組 rm-f隊

一、在樹莓派中安裝opencv庫

opencv我在第6次實驗中安裝過了,編譯源碼的方式太慢了,這邊用pip安裝

同時糾正下我的第6次實驗博客“遇到的問題”中對安裝版本的認識,4B可以安裝opencv4,在這一次實驗遇到的問題中具體講。

首先安裝依賴

pip3 install --upgrade setuptools
pip3 install numpy Matplotlib

sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libxvidcore-dev libx264-dev
sudo apt-get install libgtk2.0-dev libgtk-3-dev
sudo apt-get install libatlas-base-dev
sudo apt install libqt4-test

然后安裝opencv
這樣默認安裝最新版

pip3 install opencv-python

安裝成功

二、使用opencv和python控制樹莓派的攝像頭

示例代碼

# import the necessary packages
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
 
# initialize the camera and grab a reference to the raw camera capture
camera = PiCamera()
rawCapture = PiRGBArray(camera)
 
# allow the camera to warmup
time.sleep(0.1) 
 
# grab an image from the camera
camera.capture(rawCapture, format="bgr")
image = rawCapture.array
 
# display the image on screen and wait for a keypress
cv2.imshow("Image", image)
cv2.waitKey(0)

代碼中感光時間不夠長
time.sleep(0.1) 處僅為0.1秒,如果拍照環境比較暗,例如下圖1,效果就不太好,建議將感光時間稍微改長一點,例如圖2,同樣環境,感光時間是2s

圖1

圖1

圖2

圖2

下面這個是第6次實驗中我已經完成過了的

通過攝像頭實時拍攝查看視頻

import cv2

cap = cv2.VideoCapture(0)
while(1):
    ret, frame = cap.read()
    cv2.imshow("capture", frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows() 

三、利用樹莓派的攝像頭實現人臉識別

1.facerec_on_raspberry_pi.py

facerec_on_raspberry_pi.py

# This is a demo of running face recognition on a Raspberry Pi.
# This program will print out the names of anyone it recognizes to the console.
# To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
# the picamera[array] module installed.
# You can follow this installation instructions to get your RPi set up:
# https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65

import face_recognition
import picamera
import numpy as np

# Get a reference to the Raspberry Pi camera.
# If this fails, make sure you have a camera connected to the RPi and that you
# enabled your camera in raspi-config and rebooted first.
camera = picamera.PiCamera()
camera.resolution = (320, 240)
output = np.empty((240, 320, 3), dtype=np.uint8)

# Load a sample picture and learn how to recognize it.
print("Loading known face image(s)")
obama_image = face_recognition.load_image_file("obama_small.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Initialize some variables
face_locations = []
face_encodings = []

while True:

    print("Capturing image.")
    # Grab a single frame of video from the RPi camera as a numpy array
    camera.capture(output, format="rgb")

    # Find all the faces and face encodings in the current frame of video
    face_locations = face_recognition.face_locations(output)

    print("Found {} faces in image.".format(len(face_locations)))
    face_encodings = face_recognition.face_encodings(output, face_locations)

    # Loop over each face found in the frame to see if it's someone we know.
    for face_encoding in face_encodings:

        # See if the face is a match for the known face(s)
        match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
        name = "<Unknown Person>"

        if match[0]:
            name = "Barack Obama"
        print("I see someone named {}!".format(name))

代碼所在目錄下應放一張用於比對的照片,文件名obama_small.jpg

2.facerec_from_webcam_faster.py

facerec_from_webcam_faster.py

import face_recognition
import cv2
import numpy as np


# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
#   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
#   2. Only detect faces in every other frame of video.

# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.

# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

# Create arrays of known face encodings and their names
known_face_encodings = [
    obama_face_encoding,
    biden_face_encoding
]

known_face_names = [
    "Barack Obama",
    "Joe Biden"
]



# Initialize some variables
face_locations = []
face_encodings = []
face_names = []

process_this_frame = True

while True:

    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:

        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # # If a match was found in known_face_encodings, just use the first one.
            # if True in matches:
            #     first_match_index = matches.index(True)
            #     name = known_face_names[first_match_index]
            # Or instead, use the known face with the smallest distance to the new face
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)
            if matches[best_match_index]:
                name = known_face_names[best_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame

    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

四、結合微服務的進階任務

1.安裝Docker

下載安裝腳本

curl -fsSL https://get.docker.com -o get-docker.sh

執行安裝腳本(使用阿里雲鏡像)

sh get-docker.sh --mirror Aliyun

將當前用戶加入docker用戶組

sudo usermod -aG docker $USER

嘗試下查看docker版本

重啟過后,docker指令之前就不需要加sudo了

(2).配置docker的鏡像加速

具體請參考我的第1次作業博客

sudo nano /etc/docker/daemon.json

編輯完成后,restart一下docker

service docker restart

(3).定制自己的opencv鏡像

首先拉取鏡像

docker pull sixsq/opencv-python

運行這個鏡像

docker run -it sixsq/opencv-python /bin/bash

在容器中,pip安裝 "picamera[array]" dlib face_recognition

pip install "picamera[array]" dlib face_recognition

安裝成功,退出容器
然后commit

編寫Dockerfile

FROM zqzopencv
MAINTAINER ZhuQingzhang031702426
RUN mkdir /myapp
WORKDIR /myapp
COPY myapp .

build

docker build -t myopencv .

(4).運行容器執行facerec_on_raspberry_pi.py

docker run -it --device=/dev/vchiq --device=/dev/video0 --name facerec myopencv
root@38afdcc52062:/myapp# ls
biden.jpg  facerec_from_webcam_faster.py  facerec_on_raspberry_pi.py  obama.jpg  obama_small.jpg
root@38afdcc52062:/myapp# python3 facerec_on_raspberry_pi.py

如果不加--device=/dev/vchiq參數
則會出現以下報錯

* failed to open vchiq instance

(5).附加選做:opencv的docker容器中運行facerec_from_webcam_faster.py

在Windows系統中安裝Xming
安裝過程一路默認即可

(https://sourceforge.net/projects/xming/)

檢查樹莓派的ssh配置中的X11是否開啟

cat /etc/ssh/sshd_config

putty中勾起X11選項

然后使用Putty的ssh登錄樹莓派
查看DISPLAY環境變量值
printenv

可以看到
DISPLAY=localhost:10.0

然后編寫run.sh

#sudo apt-get install x11-xserver-utils
xhost +
docker run -it \
        --net=host \
        -v $HOME/.Xauthority:/root/.Xauthority \
        -e DISPLAY=:10.0  \
        -e QT_X11_NO_MITSHM=1 \
        --device=/dev/vchiq \
        --device=/dev/video0 \
        --name facerecgui \
        myopencv \
	python3 facerec_from_webcam_faster.py

在putty中用ssh運行

sh run.sh

同樣,也可以在vnc中運行

編寫啟動腳本

runvnc.sh

#sudo apt-get install x11-xserver-utils
xhost +
docker run -it \
	-v /tmp/.X11-unix:/tmp/.X11-unix \
	-e DISPLAY=$DISPLAY \
	-e QT_X11_NO_MITSHM=1 \
  	--device=/dev/vchiq \
	--device=/dev/video0 \
	--name facerecguivnc \
	myopencv \
	python3 facerec_from_webcam_faster.py

然后運行

sh runvnc.sh

五、遇到的問題

1.關於OpenCV的版本

使用版本4的時候可能出現以下問題

Traceback (most recent call last):
  File "/home/pi/Desktop/opencv.py", line 1, in <module>
    import cv2
  File "/home/pi/.local/lib/python3.7/site-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: /home/pi/.local/lib/python3.7/site-packages/cv2/cv2.cpython-37m-arm-linux-gnueabihf.so: undefined symbol: __atomic_fetch_add_8

在上一篇博客我的第6次實驗博客“遇到的問題”中,我的描述是4B可能和opencv4不太兼容,所以當時我回退了版本到3,解決了。

這邊更正下安裝4消除這個問題的做法

遇到這個問題需要手動加載一個庫文件

sudo nano .bashrc
添加:export LD_ sudo nano .bashrc PRELOAD=/usr/lib/arm-linux-gnueabihf/libatomic.so.1

這樣就不會報錯了。

六、在線協作

| 031702426 | 朱慶章 | 負責實際操作 |
| 031702428 | 潘海東 | 查找資料並提供了問題1的解決方案 |
| 031702405 | 陳夢雪 | 查找資料 |

主要通過qq聊天和屏幕分享協作

屏幕分享

討論大作業選題

總的來說,這次實驗難度不大,opencv我在上一次實驗中就已經配過了,基本沒有遇到難題。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM