參考:https://www.cnblogs.com/q735613050/p/8969452.html
數據集下載可見https://blog.csdn.net/u013249853/article/details/84924808
微軟發布的 COCO 數據庫是一個大型圖像數據集, 專為對象檢測、分割、人體關鍵點檢測、語義分割和字幕生成而設計。
COCO 數據庫的網址是:
- MS COCO 數據集主頁:http://mscoco.org/
- Github 網址:https://github.com/Xinering/cocoapi
- 關於 API 更多的細節在網站: http://mscoco.org/dataset/#download
COCO API 提供了 Matlab, Python 和 Lua 的 API 接口. 該 API 接口可以提供完整的圖像標簽數據的加載, parsing 和可視化。此外,網站還提供了數據相關的文章, 教程等。
在使用 COCO 數據庫提供的 API 和 demo 之前, 需要首先下載 COCO 的圖像和標簽數據(類別標志、類別數量區分、像素級的分割等 ):
- 圖像數據下載到
coco/images/
文件夾中 - 標簽數據下載到
coco/annotations/
文件夾中
安裝:
pip install pycocotools
出錯:
from Cython.Build import cythonize ModuleNotFoundError: No module named 'Cython' ---------------------------------------- ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
解決,先安裝Cython:
pip install Cython Collecting Cython Downloading Cython-0.29.19-cp37-cp37m-macosx_10_9_x86_64.whl (1.9 MB)
再安裝就成功了
但是安裝后調用還是會出錯:
ModuleNotFoundError: No module named 'pycocotools._mask'
原來以為是python版本的問題,從3.7變為3.5
后面才發現不是的
其實是因為你得先在../cocoapi-master/PythonAPI目錄下運行:
$ make python setup.py build_ext --inplace running build_ext cythoning pycocotools/_mask.pyx to pycocotools/_mask.c /anaconda3/envs/deeplearning/lib/python3.7/site-packages/Cython/Compiler/Main.py:369: FutureWarning: Cython directive 'language_level' not set, using 2 for now (Py2). This will change in a later release! File: /Users/user/pytorch/ssd.pytorch-master/cocoapi-master/PythonAPI/pycocotools/_mask.pyx tree = Parsing.p_module(s, pxd, full_module_name) building 'pycocotools._mask' extension creating build creating build/common creating build/temp.macosx-10.9-x86_64-3.7 creating build/temp.macosx-10.9-x86_64-3.7/pycocotools gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/anaconda3/envs/deeplearning/include -arch x86_64 -I/anaconda3/envs/deeplearning/include -arch x86_64 -I/anaconda3/envs/deeplearning/lib/python3.7/site-packages/numpy/core/include -I../common -I/anaconda3/envs/deeplearning/include/python3.7m -c ../common/maskApi.c -o build/temp.macosx-10.9-x86_64-3.7/../common/maskApi.o -Wno-cpp -Wno-unused-function -std=c99 gcc -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -I/anaconda3/envs/deeplearning/include -arch x86_64 -I/anaconda3/envs/deeplearning/include -arch x86_64 -I/anaconda3/envs/deeplearning/lib/python3.7/site-packages/numpy/core/include -I../common -I/anaconda3/envs/deeplearning/include/python3.7m -c pycocotools/_mask.c -o build/temp.macosx-10.9-x86_64-3.7/pycocotools/_mask.o -Wno-cpp -Wno-unused-function -std=c99 creating build/lib.macosx-10.9-x86_64-3.7 creating build/lib.macosx-10.9-x86_64-3.7/pycocotools gcc -bundle -undefined dynamic_lookup -L/anaconda3/envs/deeplearning/lib -arch x86_64 -L/anaconda3/envs/deeplearning/lib -arch x86_64 -arch x86_64 build/temp.macosx-10.9-x86_64-3.7/../common/maskApi.o build/temp.macosx-10.9-x86_64-3.7/pycocotools/_mask.o -o build/lib.macosx-10.9-x86_64-3.7/pycocotools/_mask.cpython-37m-darwin.so copying build/lib.macosx-10.9-x86_64-3.7/pycocotools/_mask.cpython-37m-darwin.so -> pycocotools rm -rf build
該命令調用setup.py,生成pycocotools._mask這個命令
果然后面就沒有再出現這個錯誤了
pycocoDemo.ipynb
首先加載模塊
%matplotlib inline from pycocotools.coco import COCO import numpy as np import skimage.io as io import matplotlib.pyplot as plt import pylab pylab.rcParams['figure.figsize'] = (8.0, 10.0)
1.首先顯示實體標注instance annotations
1)加載對應的標注json文件,初始化COCO api:
dataDir='/Users/user/pytorch/ssd.pytorch-master/download_data/coco' dataType='val2014' annFile='{}/annotations/annotations/instances_{}.json'.format(dataDir,dataType) # initialize COCO api for instance annotations coco=COCO(annFile)
對應的文件目錄主要看自己的存放路徑,應該進行相應的修改
返回:
loading annotations into memory... Done (t=4.33s) creating index... index created!
該json文件中的數據內容類似instances_train2014.json訓練集的內容:

{"info": {"description": "This is stable 1.0 version of the 2014 MS COCO dataset.", "url": "http://mscoco.org", "version": "1.0", "year": 2014, "contributor": "Microsoft COCO group", "date_created": "2015-01-27 09:11:52.357475"}, "images": [{"license": 5, "file_name": "COCO_train2014_000000057870.jpg", "coco_url": "http://mscoco.org/images/57870", "height": 480, "width": 640, "date_captured": "2013-11-14 16:28:13", "flickr_url": "http://farm4.staticflickr.com/3153/2970773875_164f0c0b83_z.jpg", "id": 57870},# image_id {"license": 5, "file_name": "COCO_train2014_000000384029.jpg", "coco_url": "http://mscoco.org/images/384029", "height": 429, "width": 640, "date_captured": "2013-11-14 16:29:45", "flickr_url": "http://farm3.staticflickr.com/2422/3577229611_3a3235458a_z.jpg", "id": 384029}, {"license": 1, "file_name": "COCO_train2014_000000222016.jpg", "coco_url": "http://mscoco.org/images/222016", "height": 640, "width": 480, "date_captured": "2013-11-14 16:37:59", "flickr_url": "http://farm2.staticflickr.com/1431/1118526611_09172475e5_z.jpg", "id": 222016} {"license": 4, "file_name": "COCO_train2014_000000475546.jpg", "coco_url": "http://mscoco.org/images/475546", "height": 375, "width": 500, "date_captured": "2013-11-25 21:20:23", "flickr_url": "http://farm1.staticflickr.com/167/423175046_6cd9d0205a_z.jpg", "id": 475546}], "licenses": [{"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/", "id": 1, "name": "Attribution-NonCommercial-ShareAlike License"}, {"url": "http://creativecommons.org/licenses/by-nc/2.0/", "id": 2, "name": "Attribution-NonCommercial License"}, {"url": "http://creativecommons.org/licenses/by-nc-nd/2.0/", "id": 3, "name": "Attribution-NonCommercial-NoDerivs License"}, {"url": "http://creativecommons.org/licenses/by/2.0/", "id": 4, "name": "Attribution License"}, {"url": "http://creativecommons.org/licenses/by-sa/2.0/", "id": 5, "name": "Attribution-ShareAlike License"}, {"url": "http://creativecommons.org/licenses/by-nd/2.0/", "id": 6, "name": "Attribution-NoDerivs License"}, {"url": "http://flickr.com/commons/usage/", "id": 7, "name": "No known copyright restrictions"}, {"url": "http://www.usa.gov/copyright.shtml", "id": 8, "name": "United States Government Work"}], "annotations": [{"segmentation": [[312.29, 562.89, 402.25, 232.61, 560.32, 300.72, 571.89]], "area": 54652.9556, "iscrowd": 0, "image_id": 480023, "bbox": [116.95, 305.86, 285.3, 266.03], "category_id": 58, "id": 86}, #這個id表示annotation的id,因為每一個圖像有不止一個annotation,所以要對每一個annotation編號 {"segmentation": [[252.46, 208.17, 267.96, 210.11, 208.45]], "area": 421.47274999999996, "iscrowd": 0, "image_id": 50518, "bbox": [245.54, 208.17, 40.14, 19.1], "category_id": 58, "id": 89}, {"segmentation": [[349.66, 143.56, 344.19, 131.38, 352.94, 139.19, 355.13, 139.97, 354.5, 144.34]], "area": 292.12984999999935, "iscrowd": 0, "image_id": 497261, "bbox": [343.72, 112.63, 17.66, 31.71], "category_id": 1, "id": 2232195}, {"segmentation": {"counts": [69901, 4, 21, 2,470, 12, 468, 13, 467, 12, 468, 12, 468, 12, 469, 10, 471, 8, 474, 4, 73630], "size": [480, 640]}, "area": 2846, "iscrowd": 1, "image_id": 554752, "bbox": [145, 275, 341, 53], "category_id": 1, "id": 900100554752}, {"segmentation": {"counts": [70375, 8, 415, 12, 411, 391, 34, 391, 34, 391, 35, 149], "size": [425, 640]}, "area": 7298, "iscrowd": 1, "image_id": 350724, "bbox": [165, 216, 474, 152], "category_id": 62, "id": 906200350724}, {"segmentation": {"counts": [99015, 6, 352, 8, 349, 8, 75781], "size": [359, 640]}, "area": 6478, "iscrowd": 1, "image_id": 554743, "bbox": [275, 207, 153, 148], "category_id": 1, "id": 900100554743}, {"segmentation": {"counts": [97214, 1, 425, 4, 6531], "size": [427, 640]}, "area": 3489, "iscrowd": 1, "image_id": 95999, "bbox": [227, 260, 397, 82], "category_id": 1, "id": 900100095999}], "categories": [{"supercategory": "person", "id": 1, "name": "person"}, # 一共80類 {"supercategory": "vehicle", "id": 2, "name": "bicycle"}, {"supercategory": "vehicle", "id": 3, "name": "car"}, {"supercategory": "vehicle", "id": 4, "name": "motorcycle"}, {"supercategory": "vehicle", "id": 5, "name": "airplane"}, {"supercategory": "vehicle", "id": 6, "name": "bus"}, {"supercategory": "vehicle", "id": 7, "name": "train"}, {"supercategory": "vehicle", "id": 8, "name": "truck"}, {"supercategory": "vehicle", "id": 9, "name": "boat"}, {"supercategory": "outdoor", "id": 10, "name": "traffic light"}, {"supercategory": "outdoor", "id": 11, "name": "fire hydrant"}, {"supercategory": "outdoor", "id": 13, "name": "stop sign"}, {"supercategory": "outdoor", "id": 14, "name": "parking meter"}, {"supercategory": "outdoor", "id": 15, "name": "bench"}, {"supercategory": "animal", "id": 16, "name": "bird"}, {"supercategory": "animal", "id": 17, "name": "cat"}, {"supercategory": "animal", "id": 18, "name": "dog"}, {"supercategory": "animal", "id": 19, "name": "horse"}, {"supercategory": "animal", "id": 20, "name": "sheep"}, {"supercategory": "animal", "id": 21, "name": "cow"}, {"supercategory": "animal", "id": 22, "name": "elephant"}, {"supercategory": "animal", "id": 23, "name": "bear"}, {"supercategory": "animal", "id": 24, "name": "zebra"}, {"supercategory": "animal", "id": 25, "name": "giraffe"}, {"supercategory": "accessory", "id": 27, "name": "backpack"}, {"supercategory": "accessory", "id": 28, "name": "umbrella"}, {"supercategory": "accessory", "id": 31, "name": "handbag"}, {"supercategory": "accessory", "id": 32, "name": "tie"}, {"supercategory": "accessory", "id": 33, "name": "suitcase"}, {"supercategory": "sports", "id": 34, "name": "frisbee"}, {"supercategory": "sports", "id": 35, "name": "skis"}, {"supercategory": "sports", "id": 36, "name": "snowboard"}, {"supercategory": "sports", "id": 37, "name": "sports ball"}, {"supercategory": "sports", "id": 38, "name": "kite"}, {"supercategory": "sports", "id": 39, "name": "baseball bat"}, {"supercategory": "sports", "id": 40, "name": "baseball glove"}, {"supercategory": "sports", "id": 41, "name": "skateboard"}, {"supercategory": "sports", "id": 42, "name": "surfboard"}, {"supercategory": "sports", "id": 43, "name": "tennis racket"}, {"supercategory": "kitchen", "id": 44, "name": "bottle"}, {"supercategory": "kitchen", "id": 46, "name": "wine glass"}, {"supercategory": "kitchen", "id": 47, "name": "cup"}, {"supercategory": "kitchen", "id": 48, "name": "fork"}, {"supercategory": "kitchen", "id": 49, "name": "knife"}, {"supercategory": "kitchen", "id": 50, "name": "spoon"}, {"supercategory": "kitchen", "id": 51, "name": "bowl"}, {"supercategory": "food", "id": 52, "name": "banana"}, {"supercategory": "food", "id": 53, "name": "apple"}, {"supercategory": "food", "id": 54, "name": "sandwich"}, {"supercategory": "food", "id": 55, "name": "orange"}, {"supercategory": "food", "id": 56, "name": "broccoli"}, {"supercategory": "food", "id": 57, "name": "carrot"}, {"supercategory": "food", "id": 58, "name": "hot dog"}, {"supercategory": "food", "id": 59, "name": "pizza"}, {"supercategory": "food", "id": 60, "name": "donut"}, {"supercategory": "food", "id": 61, "name": "cake"}, {"supercategory": "furniture", "id": 62, "name": "chair"}, {"supercategory": "furniture", "id": 63, "name": "couch"}, {"supercategory": "furniture", "id": 64, "name": "potted plant"}, {"supercategory": "furniture", "id": 65, "name": "bed"}, {"supercategory": "furniture", "id": 67, "name": "dining table"}, {"supercategory": "furniture", "id": 70, "name": "toilet"}, {"supercategory": "electronic", "id": 72, "name": "tv"}, {"supercategory": "electronic", "id": 73, "name": "laptop"}, {"supercategory": "electronic", "id": 74, "name": "mouse"}, {"supercategory": "electronic", "id": 75, "name": "remote"}, {"supercategory": "electronic", "id": 76, "name": "keyboard"}, {"supercategory": "electronic", "id": 77, "name": "cell phone"}, {"supercategory": "appliance", "id": 78, "name": "microwave"}, {"supercategory": "appliance", "id": 79, "name": "oven"}, {"supercategory": "appliance", "id": 80, "name": "toaster"}, {"supercategory": "appliance", "id": 81, "name": "sink"}, {"supercategory": "appliance", "id": 82, "name": "refrigerator"}, {"supercategory": "indoor", "id": 84, "name": "book"}, {"supercategory": "indoor", "id": 85, "name": "clock"}, {"supercategory": "indoor", "id": 86, "name": "vase"}, {"supercategory": "indoor", "id": 87, "name": "scissors"}, {"supercategory": "indoor", "id": 88, "name": "teddy bear"}, {"supercategory": "indoor", "id": 89, "name": "hair drier"}, {"supercategory": "indoor", "id": 90, "name": "toothbrush"}]}
測試它自己的結果:
print(coco.dataset['info']) print(coco.dataset['images'][0]) print(coco.dataset['licenses'][0]) print(coco.dataset['annotations'][0]) print(coco.dataset['categories'][0])
返回:
{'description': 'COCO 2014 Dataset', 'url': 'http://cocodataset.org', 'version': '1.0', 'year': 2014, 'contributor': 'COCO Consortium', 'date_created': '2017/09/01'} {'license': 3, 'file_name': 'COCO_val2014_000000391895.jpg', 'coco_url': 'http://images.cocodataset.org/val2014/COCO_val2014_000000391895.jpg', 'height': 360, 'width': 640, 'date_captured': '2013-11-14 11:18:45', 'flickr_url': 'http://farm9.staticflickr.com/8186/8119368305_4e622c8349_z.jpg', 'id': 391895} {'url': 'http://creativecommons.org/licenses/by-nc-sa/2.0/', 'id': 1, 'name': 'Attribution-NonCommercial-ShareAlike License'} {'segmentation': [[239.97, 260.24, 222.04, 270.49, 199.84, 253.41, 213.5, 227.79, 259.62, 200.46, 274.13, 202.17, 277.55, 210.71, 249.37, 253.41, 237.41, 264.51, 242.54, 261.95, 228.87, 271.34]], 'area': 2765.1486500000005, 'iscrowd': 0, 'image_id': 558840, 'bbox': [199.84, 200.46, 77.71, 70.88], 'category_id': 58, 'id': 156} {'supercategory': 'person', 'id': 1, 'name': 'person'}
總結即json文件內容形如:
{ "info": info, "licenses": [license], "images": [image], "annotations": [annotation], "categories": [category] }
2)顯示所有實體的類別,以及他們屬於的主類類別
# display COCO categories and supercategories print(coco.getCatIds())#得到類的id cats = coco.loadCats(coco.getCatIds()) #根據類id得到類的信息,如類名name,類屬於的主類supercategory,以及該類id print(cats[0]) #輸出一個類 nms=[cat['name'] for cat in cats] #得到所有類名 print('COCO categories: \n{}\n'.format(' '.join(nms))) nms = set([cat['supercategory'] for cat in cats]) #去掉重復項,得到所有主類名 print('COCO supercategories: \n{}'.format(' '.join(nms)))
返回:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] {'supercategory': 'person', 'id': 1, 'name': 'person'} COCO categories: person bicycle car motorcycle airplane bus train truck boat traffic light fire hydrant stop sign parking meter bench bird cat dog horse sheep cow elephant bear zebra giraffe backpack umbrella handbag tie suitcase frisbee skis snowboard sports ball kite baseball bat baseball glove skateboard surfboard tennis racket bottle wine glass cup fork knife spoon bowl banana apple sandwich orange broccoli carrot hot dog pizza donut cake chair couch potted plant bed dining table toilet tv laptop mouse remote keyboard cell phone microwave oven toaster sink refrigerator book clock vase scissors teddy bear hair drier toothbrush COCO supercategories: sports electronic indoor animal kitchen outdoor furniture appliance food vehicle person accessory
3)指定要尋找的類id,然后去找包含這些類id的圖像,並加載該圖像的信息
# get all images containing given categories, select one at random catIds = coco.getCatIds(catNms=['person','dog','skateboard']); #僅得到這三類的id print(catIds) imgIds = coco.getImgIds(catIds=catIds ); #根據給定的類id得到對應的包含這些類id的圖像id print(imgIds) imgIds = coco.getImgIds(imgIds = [324158])#從中挑出一張圖,id為324158,可以隨意改成上面的任一id print(imgIds) print(len(imgIds)) #從[0,1]隨機取一個整數,其實就是0從imgIds列表取一個圖像id,其實就是324158,然后去加載圖像 img = coco.loadImgs(imgIds[np.random.randint(0,len(imgIds))])[0] print(img)
返回:
[1, 18, 41] [438915, 209028, 500100, 372874, 282768, 360595, 366484, 449560, 28842, 241837, 324158, 231240, 493020, 547421, 549220, 255209, 353644, 279278, 45175] [324158] 1 {'license': 1, 'file_name': 'COCO_val2014_000000324158.jpg', 'coco_url': 'http://images.cocodataset.org/val2014/COCO_val2014_000000324158.jpg', 'height': 334, 'width': 500, 'date_captured': '2013-11-19 23:54:06', 'flickr_url': 'http://farm1.staticflickr.com/169/417836491_5bf8762150_z.jpg', 'id': 324158}
4)可以去你本地存放圖像的位置加載圖像,也可以使用其url加載圖像
# load and display image # I = io.imread('%s/images/%s/%s'%(dataDir,dataType,img['file_name'])) # use url to load image print(img['coco_url'])#根據coco_url路徑去加載圖像 I = io.imread(img['coco_url']) plt.axis('off') plt.imshow(I) plt.show()
返回:
http://images.cocodataset.org/val2014/COCO_val2014_000000324158.jpg
5)得到標注信息的id,然后根據這個標注信息id去得到詳細的標注信息
# load and display instance annotations plt.imshow(I); plt.axis('off') #根據這張圖的imgId,以及想要標注的這張圖中的類id-catIds,即['person','dog','skateboard'] #得到對應物體的標注id annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None) print(annIds) #根據得到的標注id,去得到對應的標注位置 anns = coco.loadAnns(annIds) print(anns) coco.showAnns(anns)
返回:
[10673, 638724, 2162813] [{'segmentation': [[216.7, 211.89, 216.16, 217.81, 215.89, 220.77, 215.89, 223.73, 217.77, 225.35, 219.12, 224.54, 219.12, 220.5, 219.66, 217.27, 219.93, 212.7, 220.46, 207.85, 219.66, 203.01, 218.85, 198.43, 217.77, 195.74, 216.7, 194.93, 215.62, 190.62, 215.62, 186.59, 214.27, 183.89, 211.85, 184.16, 211.85, 187.66, 210.24, 187.66, 209.16, 184.97, 207.81, 183.36, 205.12, 186.59, 205.12, 189.28, 201.08, 192.78, 199.74, 195.2, 196.78, 200.04, 196.51, 203.01, 198.12, 205.43, 197.32, 209.2, 196.78, 213.23, 197.05, 218.89, 199.74, 221.85, 201.62, 225.35, 201.62, 233.69, 201.08, 236.11, 202.97, 236.38, 204.85, 236.11, 204.58, 232.34, 203.78, 228.85, 205.39, 233.15, 207.81, 235.57, 208.62, 234.23, 206.74, 231.27, 205.12, 228.04, 206.74, 222.39, 208.35, 219.96, 210.77, 217.54, 211.85, 221.85, 214.54, 223.73, 212.93, 217.54, 212.93, 215.66, 215.89, 212.96, 216.16, 212.16]], 'area': 759.3375500000002, 'iscrowd': 0, 'image_id': 324158, 'bbox': [196.51, 183.36, 23.95, 53.02], 'category_id': 18, 'id': 10673}, {'segmentation': [[223.48, 251.26, 230.81, 246.74, 234.48, 247.6, 241.8, 247.6, 247.41, 243.72, 248.7, 244.15, 252.15, 249.54, 252.15, 254.71, 249.78, 255.79, 247.19, 260.32, 243.1, 263.33, 235.77, 263.33, 224.56, 262.47, 223.91, 259.24, 224.13, 254.5]], 'area': 409.74355, 'iscrowd': 0, 'image_id': 324158, 'bbox': [223.48, 243.72, 28.67, 19.61], 'category_id': 41, 'id': 638724}, {'segmentation': [[228.43, 247.9, 229.63, 206.62, 224.24, 191.07, 220.65, 179.7, 207.49, 169.53, 202.71, 163.55, 205.7, 133.04, 218.86, 121.68, 213.47, 104.33, 225.44, 96.55, 236.8, 106.12, 236.8, 116.29, 254.15, 127.06, 263.72, 150.39, 274.49, 166.54, 271.5, 177.31, 266.12, 181.5, 257.14, 159.96, 254.75, 177.91, 261.93, 192.27, 262.53, 216.79, 261.33, 234.14, 268.51, 249.1, 247.57, 246.11, 245.78, 249.69, 229.03, 248.5]], 'area': 5999.544500000001, 'iscrowd': 0, 'image_id': 324158, 'bbox': [202.71, 96.55, 71.78, 153.14], 'category_id': 1, 'id': 2162813}]
segmentation記錄的是多邊形點或RLE,其格式取決於這個實例是一個單個的對象(即iscrowd=0,將使用polygons格式)還是一組對象(即一群物體,iscrowd=1,將使用RLE格式)。格式如下:
annotation{ "id": int, "image_id": int, "category_id": int, "segmentation": RLE or [polygon], "area": float, "bbox": [x,y,width,height], "iscrowd": 0 or 1, }
每個對象(不管是iscrowd=0還是iscrowd=1)都會有一個矩形框bbox,表示左上角的坐標(x,y)以及這個矩形框的寬高(width,height)
area字段是area of encoded masks ,即面積
2.顯示人體關鍵點標注
1)首先也是加載對應的json文件
# initialize COCO api for person keypoints annotations annFile = '{}/annotations/annotations/person_keypoints_{}.json'.format(dataDir,dataType) coco_kps=COCO(annFile)
返回:
loading annotations into memory... Done (t=2.27s) creating index... index created!
2)也是得到對應的標注id信息,然后進行標注
# load and display keypoints annotations plt.imshow(I); plt.axis('off') ax = plt.gca() annIds = coco_kps.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None) print(annIds) anns = coco_kps.loadAnns(annIds) print(anns) coco_kps.showAnns(anns)
返回:
[2162813] [{'segmentation': [[228.43, 247.9, 229.63, 206.62, 224.24, 191.07, 220.65, 179.7, 207.49, 169.53, 202.71, 163.55, 205.7, 133.04, 218.86, 121.68, 213.47, 104.33, 225.44, 96.55, 236.8, 106.12, 236.8, 116.29, 254.15, 127.06, 263.72, 150.39, 274.49, 166.54, 271.5, 177.31, 266.12, 181.5, 257.14, 159.96, 254.75, 177.91, 261.93, 192.27, 262.53, 216.79, 261.33, 234.14, 268.51, 249.1, 247.57, 246.11, 245.78, 249.69, 229.03, 248.5]], 'num_keypoints': 12, 'area': 5999.5445, 'iscrowd': 0, 'keypoints': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 212, 135, 2, 241, 125, 2, 209, 162, 2, 257, 146, 2, 218, 172, 2, 267, 167, 2, 225, 177, 2, 247, 176, 2, 235, 203, 2, 254, 204, 2, 236, 240, 2, 254, 238, 2], 'image_id': 324158, 'bbox': [202.71, 96.55, 71.78, 153.14], 'category_id': 1, 'id': 2162813}]
關鍵點的格式為:
annotation{ "keypoints": [x1,y1,v1,...], "num_keypoints": int, "id": int, "image_id": int, "category_id": int, "segmentation": RLE or [polygon], "area": float, "bbox": [x,y,width,height], "iscrowd": 0 or 1,
新增的keypoints是一個長度為3*num_keypoints的數組,其中num_keypoints是category中keypoints的總數量。每一個keypoint是一個長度為3的數組,第一和第二個元素分別是x和y坐標值,第三個元素是個標志位v,v為0時表示這個關鍵點沒有標注(這種情況下x=y=v=0),v為1時表示這個關鍵點標注了但是不可見(被遮擋了),v為2時表示這個關鍵點標注了同時也可見。所以上面的那個例子,keypoints的長度為3*17,但是因為其前面的5個keypoint沒有標注x=y=v=0,所以實際有用的點是后面的那12個
num_keypoints表示這個目標上被標注的關鍵點的數量(v>0),比較小的目標上可能就無法標注關鍵點。
3.顯示字幕標注信息
1)加載json文件
# initialize COCO api for caption annotations annFile = '{}/annotations/annotations/captions_{}.json'.format(dataDir,dataType) coco_caps=COCO(annFile)
返回:
loading annotations into memory... Done (t=0.34s) creating index... index created!
2)加載標注信息
# load and display caption annotations annIds = coco_caps.getAnnIds(imgIds=img['id']); print(annIds) anns = coco_caps.loadAnns(annIds) print(anns) coco_caps.showAnns(anns) plt.imshow(I); plt.axis('off'); plt.show()
返回:
[310079, 311105, 311588, 312677, 312860] [{'image_id': 324158, 'id': 310079, 'caption': 'A man is skate boarding down a path and a dog is running by his side.'}, {'image_id': 324158, 'id': 311105, 'caption': 'A man on a skateboard with a dog outside. '}, {'image_id': 324158, 'id': 311588, 'caption': 'A person riding a skate board with a dog following beside.'}, {'image_id': 324158, 'id': 312677, 'caption': 'This man is riding a skateboard behind a dog.'}, {'image_id': 324158, 'id': 312860, 'caption': 'A man walking his dog on a quiet country road.'}] #下面即字幕caption A man is skate boarding down a path and a dog is running by his side. A man on a skateboard with a dog outside. A person riding a skate board with a dog following beside. This man is riding a skateboard behind a dog. A man walking his dog on a quiet country road.
字幕的格式為:
annotation{ "id": int, "image_id": int, "caption": str }
上面調用的函數源代碼:
http://cocodataset.org/#download
https://github.com/Xinering/cocoapi/blob/master/PythonAPI/pycocotools/coco.py

__author__ = 'tylin' __version__ = '2.0' # Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection, # segmentation, and caption generation. pycocotools is a Python API that # assists in loading, parsing and visualizing the annotations in COCO. # Please visit http://mscoco.org/ for more information on COCO, including # for the data, paper, and tutorials. The exact format of the annotations # is also described on the COCO website. For example usage of the pycocotools # please see pycocotools_demo.ipynb. In addition to this API, please download both # the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly # into Python dictionary # Using the API provides additional utility functions. Note that this API # supports both *instance* and *caption* annotations. In the case of # captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined: # COCO - COCO api class that loads COCO annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # annToMask - Convert segmentation in an annotation to binary mask. # showAnns - Display the specified annotations. # loadRes - Load algorithm results and create API for accessing them. # download - Download COCO images from mscoco.org server. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. # Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask, # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, # COCO>loadImgs, COCO>annToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np import copy import itertools from . import mask as maskUtils import os from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve def _isArrayLike(obj): return hasattr(obj, '__iter__') and hasattr(obj, '__len__') class COCO: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex() def createIndex(self): # create index print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if _isArrayLike(catNms) else [catNms] supNms = supNms if _isArrayLike(supNms) else [supNms] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if _isArrayLike(imgIds) else [imgIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if _isArrayLike(ids): return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if _isArrayLike(ids): return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if _isArrayLike(ids): return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]] def showAnns(self, anns, draw_bbox=False): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception('datasetType not supported') if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((int(len(seg)/2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann['image_id']] if type(ann['segmentation']['counts']) == list: rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) else: rle = [ann['segmentation']] m = maskUtils.decode(rle) img = np.ones( (m.shape[0], m.shape[1], 3) ) if ann['iscrowd'] == 1: color_mask = np.array([2.0,166.0,101.0])/255 if ann['iscrowd'] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack( (img, m*0.5) )) if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) if draw_bbox: [bbox_x, bbox_y, bbox_w, bbox_h] = ann['bbox'] poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] np_poly = np.array(poly).reshape((4,2)) polygons.append(Polygon(np_poly)) color.append(c) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print(ann['caption']) def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode): anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann['area'] = maskUtils.area(ann['segmentation']) if not 'bbox' in ann: ann['bbox'] = maskUtils.toBbox(ann['segmentation']) ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res def download(self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print('Please specify target directory') return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urlretrieve(img['coco_url'], fname) print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print('Converting ndarray to lists...') assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif type(segm['counts']) == list: # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann) m = maskUtils.decode(rle) return m