計算細節:參見知乎文章“sklearn-TfidfVectorizer徹底說清楚”
1.根據訓練集語料庫,計算出tfidf值
2.計算出測試語句每個詞語的tfidf值(只有當測試語句的詞語在訓練語料庫的dictionary中,測試語句的詞語才會計算tfidf值)
import jieba from gensim import corpora, similarities, models sentances = ['我愛你', '我喜歡他和他喜歡我', '他說今天空氣很清新'] test_sent = '我愛你們,我喜歡他' text = [[word for word in jieba.cut(sentance)]for sentance in sentances] # 1.把每個句子分詞 dictionary = corpora.Dictionary(text) # 2.把每個詞語建立索引,得到索引字典 print('dictionary=', dictionary) for idx,word in dictionary.items(): print(idx, word,end="\t") print() corpus = [dictionary.doc2bow(word_list) for word_list in text] # 3.對每句話的每個詞語進行詞頻統計,得到詞頻統計過后的語料corpus print("[dictionary.doc2bow(word_list) for word_list in text]") for word_list in text: print('\t',word_list, end="\t") print(dictionary.doc2bow(word_list)) model = models.TfidfModel(corpus) # 4. corpus輸入到TFIDF模型計算,model保存着有每句話中每個詞語的tfidf值 tfidf = model[corpus] # 保存着每句話中每個詞語的tfidf值 print('tfidf=',tfidf) for ele in tfidf: print('\t',ele) similarity =similarities.MatrixSimilarity(tfidf) # 用於計算相似度,similarity的輸入參數是tfidf值 print('similarity=', similarity) for ele in similarity: print('\t',ele) test_word_list = [word for word in jieba.cut(test_sent)] print('test_word_list=',test_word_list) test_word_freq_count = dictionary.doc2bow(test_word_list) print('test_word_freq_count=', test_word_freq_count) # 因為是根據訓練數據得到的dictionary,測試語句只有部分詞語在訓練集中 test_tfidf = model[test_word_freq_count] print('test_tfidf=', test_tfidf) sim = similarity[test_tfidf] # 獲得與所有句子的相似度,訓練集有三個句子,所以sim的長度為3 print("sim=",sim,sim.dtype) max_sim = max(sim) print('max_sim=', max_sim, end='\t') max_index = list(sim).index(max_sim) print('max_index=', max_index)
# 輸出 dictionary= Dictionary(10 unique tokens: ['我愛你', '他', '和', '喜歡', '我']...) 0 我愛你 1 他 2 和 3 喜歡 4 我 5 今天 6 很 7 清新 8 空氣 9 說 [dictionary.doc2bow(word_list) for word_list in text] ['我愛你'] [(0, 1)] ['我', '喜歡', '他', '和', '他', '喜歡', '我'] [(1, 2), (2, 1), (3, 2), (4, 2)] ['他', '說', '今天', '空氣', '很', '清新'] [(1, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)] tfidf= <gensim.interfaces.TransformedCorpus object at 0x000001DD8C472648> [(0, 1.0)] [(1, 0.23892106670040594), (2, 0.323679663983242), (3, 0.647359327966484), (4, 0.647359327966484)] [(1, 0.16284991207632715), (5, 0.44124367556640004), (6, 0.44124367556640004), (7, 0.44124367556640004), (8, 0.44124367556640004), (9, 0.44124367556640004)] similarity= MatrixSimilarity<3 docs, 10 features> [1. 0. 0.] [0. 0.99999994 0.03890828] [0. 0.03890828 1. ] test_word_list= ['我', '愛', '你們', ',', '我', '喜歡', '他'] test_word_freq_count= [(1, 1), (3, 1), (4, 2)] test_tfidf= [(1, 0.16284991207632712), (3, 0.44124367556640004), (4, 0.8824873511328001)] sim= [0. 0.8958379 0.0265201] float32 max_sim= 0.8958379 max_index= 1
可以看到,測試語句與訓練語料庫中的第index=1條語句最相似.
tfidf如何表示一個句子:
加入一個句子有n個單詞,每個單詞計算出它的tfidf值,即每個單詞用一個標量表示,則句子的維度是1*n
如果是用embedding表示法,每個單詞用m維向量表示,句子的維度是m*n
保存和加載模型的方法:
保存詞典:
dictionary.save(DICT_PATH)
保存tfidf模型:model.save(MODEL_PATH)
保存相似度
similarity.save(SIMILARITY_PATH)
加載詞典:
dictionary = corpora.Dictionary.load('require_files/dictionary.dict')
加載模型
tfidf = models.TfidfModel.load("require_files/my_model.tfidf")
加載相似度
index=similarities.MatrixSimilarity.load('require_files/similarities.0')
————————————————
refference:https://blog.csdn.net/qq_33908388/article/details/94554309