作者:麥克煎蛋 出處:https://www.cnblogs.com/mazhiyong/ 轉載請保留這段聲明,謝謝!
一、Response模型
在路徑操作中,我們可以用參數response_model
來聲明Response模型。
from typing import List from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None tags: List[str] = [] @app.post("/items/", response_model=Item) async def create_item(item: Item): return item
注意response_model
是裝飾器方法(get,post等)的參數。
Response模型可以是一個Pydantic模型,也可以是一個Pydantic模型的列表,例如List[Item]。
支持任意路徑操作:
@app.get()
@app.post()
@app.put()
@app.delete()
FastAPI利用Response模型實現以下功能:
1、將輸出數據轉換成聲明的Response模型。
2、對數據進行校驗
3、生成自動化文檔
4、(最重要的)限制輸出數據只能是所聲明的Response模型。
二、輸入輸出模型示例
# 可能需要安裝email-validator --> pip install email-validator
from fastapi import FastAPI from pydantic import BaseModel, EmailStr app = FastAPI() class UserIn(BaseModel): username: str password: str email: EmailStr full_name: str = None class UserOut(BaseModel): username: str email: EmailStr full_name: str = None @app.post("/user/", response_model=UserOut) async def create_user(*, user: UserIn): return user
如上所示,雖然路徑操作函數返回的結果是user(包含了password),但我們聲明的Response模型是UserOut(不包含password)。
FastAPI會過濾掉所有不在輸出模型中的數據,因此最終的輸出結果里並沒有password。
如果輸入內容如下:
{ "username": "user", "password": "1234", "email": "user@qq.com", "full_name": "full_name" }
那么輸出結果為:
{ "username": "user", "email": "user@qq.com", "full_name": "full_name" }
三、Response模型參數
1、Response模型可以有缺省值。
from typing import List from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = 10.5 tags: List[str] = [] items = { "foo": {"name": "Foo", "price": 50.2}, "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2}, "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []}, } @app.get("/items/{item_id}", response_model=Item, response_model_exclude_unset=True) async def read_item(item_id: str): return items[item_id]
2、返回實際有效數據
有時候我們只想返回被真正設置過的數據,而忽略其他未被設置過的或者缺省數據。
我們可以用參數response_model_exclude_unset來實現這個目的。
如上所示代碼。
# 訪問:
http://127.0.0.1:8000/items/foo
# 返回結果:
{
"name": "Foo", "price": 50.2 }
3、參數 response_model_include
和 response_model_exclude
這兩個參數接收Response模型的部分屬性集合,分別表示包含(排除剩下的)和排除(包含剩下的)集合里的屬性。
在實際工作中,我們應該盡量少利用這兩個參數,而是應該聲明不同的類表示不同的數據需求,這樣更利於數據維護和邏輯清晰。
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = 10.5 items = { "foo": {"name": "Foo", "price": 50.2}, "bar": {"name": "Bar", "description": "The Bar fighters", "price": 62, "tax": 20.2}, "baz": { "name": "Baz", "description": "There goes my baz", "price": 50.2, "tax": 10.5, }, } @app.get("/items/{item_id}/name", response_model=Item, response_model_include={"name", "description"}) async def read_item_name(item_id: str): return items[item_id] @app.get("/items/{item_id}/public", response_model=Item, response_model_exclude={"tax"}) async def read_item_public_data(item_id: str): return items[item_id]
四、Response聯合模型
我們可以聲明Response模型是一個Union類型(包含兩種類型),實際返回結果可以是Union其中任何一個。
from typing import Union from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class BaseItem(BaseModel): description: str type: str class CarItem(BaseItem): type = "car" class PlaneItem(BaseItem): type = "plane" size: int items = { "item1": {"description": "All my friends drive a low rider", "type": "car"}, "item2": { "description": "Music is my aeroplane, it's my aeroplane", "type": "plane", "size": 5, }, } @app.get("/items/{item_id}", response_model=Union[PlaneItem, CarItem]) async def read_item(item_id: str): return items[item_id]
這里PlaneItem、CarItem均從BaseItem繼承而來,提高代碼復用,也便於代碼維護。
五、Response列表模型
Response模型也可以是一個列表。
from typing import List from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str items = [ {"name": "Foo", "description": "There comes my hero"}, {"name": "Red", "description": "It's my aeroplane"}, ] @app.get("/items/", response_model=List[Item]) async def read_items(): return items
六、Response字典模型
我們也可以不用Pydantic模型,而是直接基於字典來聲明Response模型。
from typing import Dict from fastapi import FastAPI app = FastAPI() @app.get("/keyword-weights/", response_model=Dict[str, float]) async def read_keyword_weights(): return {"foo": 2.3, "bar": 3.4}