Prometheus 收集指標插件工具


監控工具

cAdvirsor

推薦使用監控容器的工具,它是由 Google 開源的,在Kubernetes中,不需要單獨去安裝,cAdvisor 作為 kubelet 內置的一部分程序可以直接使用,主要是容器的CPU、內存、磁盤、網絡、負載等指標;

node-exporter

宿主機監控工具,監控宿主機的CPU、內存、磁盤、網絡及可用性等指標;

kube-state-metrics

它監聽API Server 生成有關資源對象的狀態指標,比如:Deployment 調度了多少個Pod副本、現在可用的有幾個、有多少個Pod是Running、stopped或terminated狀態、Pod重啟了多少次等等信息;
需要注意的是kube-state-metrics只是簡單提供了一個metrics指標數據,並不會存儲這些數據,需要后端數據庫來存儲這些數據,此外kube-state-metrics采集的是metrics數據的名稱和標簽是不固定的,可能會改變,需要根據實際環境靈活配置;

metrics-server:監控核心組件之一

metrics-server 它是集群范圍資源使用數據的聚合器,實現了Resource Metrics API,通過從 kubelet 公開的 Summary API 中采集指標信息,在 kubernetes 1.16 版本的時候kubernetes集群資源監控heaspter已經被廢棄了,現在采用 metrics-server 。

它負責從kubelet收集資源指標,然后對這些指標監控數據進行聚合(依賴kube-aggregator),並在Kubernetes Apiserver中通過Metrics API( /apis/metrics.k8s.io/)公開暴露它們,但是metrics-server只存儲最新的指標數據(CPU/Memory)。但是並不會將指標轉發給第三方目標。如果使用Metrics-server需要對集群做一些特殊的配置,但是這些配置不是集群安裝時候默認配置好的,所以你的集群需要滿足這些要求:

  • 你的kube-apiserver要能訪問到metrics-server

  • 需要kube-apiserver啟用聚合層

  • 組件要有kubectl的認證配置並且綁定到Metrics-server

  • Pod / Node指標需要由Summary API通過Kubelet公開

git clone https://github.com/kubernetes-sigs/metrics-server.git

 在kube-apiserver中啟用聚合層,需要修改Kube-apiserver的一些配置選項,可以參考官方啟用聚合層文檔:

--requestheader-client-ca-file=<path to aggregator CA cert>
--requestheader-allowed-names=front-proxy-client
--requestheader-extra-headers-prefix=X-Remote-Extra-
--requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User
--proxy-client-cert-file=<path to aggregator proxy cert>
--proxy-client-key-file=<path to aggregator proxy key>

 Kubernetes集群中有些組件依賴資源指標API(metric API)的功能,比如 kubectl top、HPA和VPA。如果沒有資源指標API接口,這些組件無法運行。

在Kubernetes集群中部署Metrics-server

# mkdir ./metrics-server  
# cd $_
# for file in aggregated-metrics-reader.yaml auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml; do  wget https://raw.githubusercontent.com/kubernetes-sigs/metrics-server/master/deploy/kubernetes/$file;done

 修改 metrics-server-deployment.yaml清單文件

 containers:
 - name: metrics-server
   image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-serveramd64:v0.3.6
   command:
      - /metrics-server
      - --v=4   # 打印詳細日志為了debug,你也可以調成2
      - --kubelet-insecure-tls
      - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
   imagePullPolicy: Always

 應用修改后的metrics-server配置清單

# kubectl apply -f .

驗證

 

第三方專用exporter

還有很多專用的exporter,比如MySQL exporter、Redis exporter、Prometheus exporter等等

cAdvirsor

簡單說明

Prometheus 提供了幾種方法來監控 Docker 容器,包括一些自定義的 exporter,一般情況下不會使用這些 exporter,而是推薦使用 Google 的 cAdvisor,它是 Google 開源的、專門針對容器資源的監控和性能分析工具,可以單獨部署一個容器來運行 cAdvisor 進行采集監控指標數據, 但在 Kubernetes 集群中,不需要單獨去安裝,cAdvisor 已經作為 kubelet 程序內置的一部分,可以直接使用 cadvisor 采集與容器運行相關的所有指標數據,單獨安裝 cAdvisor 時數據采集路徑為/api/v1/nodes/[節點名稱]/proxy/metrics/cadvisor,如果是集成到kubelet的話,采集數據的路徑是https://127.0.0.1:10250/metrics/cadvisor。

下面我們針對 kubernetes 的使用進行演示,由於kubelet啟用了 https,所以需要擁有一個認證帳戶去訪問它,這里我們創建一個ServiceAccount賬號;

# 創建一個監控專用的名稱空間 monitor
[root@master01 ~]# kubectl create ns monitor
namespace/monitor created

# 創建一個SA帳號
[root@master01 ~]# kubectl create serviceaccount monitor -n monitor
serviceaccount/monitor created

# 查看創建SA后,生成的 secret 信息
[root@master01 ~]# kubectl get secret -n monitor
NAME TYPE DATA AGE
default-token-kdrzm kubernetes.io/service-account-token 3      34s
monitor-token-2ktr2 kubernetes.io/service-account-token 3      18s
[root@master01 ~]#

# SA:monitor 綁定最高集群角色
[root@master01 ~]# kubectl create clusterrolebinding monitor-cluster -n monitor --clusterrole=cluster-admin --serviceaccount=monitor:monitor
clusterrolebinding.rbac.authorization.k8s.io/monitor-cluster created

驗證

根據創建 serviceAccount 帳號 monitor 的 token 去訪問 kubelet 的10250端口驗證

[root@master01 ~]# kubectl describe secret monitor-token-2ktr2 -n monitor
Name: monitor-token-2ktr2
Namespace: monitor
Labels:       <none>
Annotations:  kubernetes.io/service-account.name: monitor
              kubernetes.io/service-account.uid: 718326e6-57ec-490c-9fcb-60698acca518

Type: kubernetes.io/service-account-token

Data
====
ca.crt:     1025 bytes
namespace: 7 bytes
token: eyJhbGciOiJSUzI1NiIsImtpZCI6IlZ2bGJjaEN2MjFwazRmLUNWdkxBYVoxUHBleTBCUFBzWW0xU25uMGM1Y3MifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tMmt0cjIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjcxODMyNmU2LTU3ZWMtNDkwYy05ZmNiLTYwNjk4YWNjYTUxOCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yOm1vbml0b3IifQ.cVml5Of1fZxyv-hRUKnqWWNK_52_btbdISvmP1Fw6Um-D9kqq5CieymC4f5KHVdxdJnA_-54ih3No5VUfetefBryh06yX_Qr01k0TGKKU_MwXcTgKgKs1Ydet7cS3VTBgZHNERdvHmK_phSnwEA87zJUkQNIMWPjTzsAUVlk0nve60MF-EohI_RqxILntlSKRpI5X5WG1p_IT7NebA5UYeKDYoabI9-YqoEPQd6XQ6Lfc5nf_tC1gUMExyaczVZTrsxjnpsZl5cFpAGg1b4NNixTLRbqWdeuu1uV5i_WJTlYMsfPNCvb2eP8KC9d0DE8UMSDNMwrehYyrmviAGqKVQ
[root@master01 ~]#

 訪問 kubelet 暴露的10250 端口

[root@master01 ~]# curl https://127.0.0.1:10250/metrics/cadvisor -k -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6IlZ2bGJjaEN2MjFwazRmLUNWdkxBYVoxUHBleTBCUFBzWW0xU25uMGM1Y3MifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tMmt0cjIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjcxODMyNmU2LTU3ZWMtNDkwYy05ZmNiLTYwNjk4YWNjYTUxOCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yOm1vbml0b3IifQ.cVml5Of1fZxyv-hRUKnqWWNK_52_btbdISvmP1Fw6Um-D9kqq5CieymC4f5KHVdxdJnA_-54ih3No5VUfetefBryh06yX_Qr01k0TGKKU_MwXcTgKgKs1Ydet7cS3VTBgZHNERdvHmK_phSnwEA87zJUkQNIMWPjTzsAUVlk0nve60MF-EohI_RqxILntlSKRpI5X5WG1p_IT7NebA5UYeKDYoabI9-YqoEPQd6XQ6Lfc5nf_tC1gUMExyaczVZTrsxjnpsZl5cFpAGg1b4NNixTLRbqWdeuu1uV5i_WJTlYMsfPNCvb2eP8KC9d0DE8UMSDNMwrehYyrmviAGqKVQ" | more
  % Total % Received % Xferd Average Speed Time Time Time Current
                                 Dload Upload Total Spent Left Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP cadvisor_version_info A metric with a constant '1' value labeled by kernel version, OS version, docker version, cadvisor version & cadvisor revision.
# TYPE cadvisor_version_info gauge
cadvisor_version_info{cadvisorRevision="",cadvisorVersion="",dockerVersion="19.03.8",kernelVersion="3.10.0-1062.12.1.el7.x86_64",osVersion="CentOS Linux 7 (Core)"} 1
# HELP container_cpu_load_average_10s Value of container cpu load average over the last 10 seconds.
# TYPE container_cpu_load_average_10s gauge
container_cpu_load_average_10s{container="",id="/",image="",name="",namespace="",pod=""} 0 1585634068599
container_cpu_load_average_10s{container="",id="/kubepods",image="",name="",namespace="",pod=""} 0 1585634068611
container_cpu_load_average_10s{container="",id="/kubepods/besteffort",image="",name="",namespace="",pod=""} 0 1585634073752
。。。

通過上面的操作發現已經可以正常訪問容器的指標數據了,里面有很多指標數據,每個指標數據前都有兩行注意如:

# HELP container_cpu_load_average_10s Value of container cpu load average over the last 10 seconds.

# TYPE container_cpu_load_average_10s gauge

第一行是監控指標的解釋;

第二行是指標類型,是儀表盤、直方圖、摘要、計數器等;

node-exporter

安裝

這里把 node-exporter 部署為Pod,使用 DaemonSet 資源類型部署,方便維護,這樣每一個kubernetes 集群節點都會部署一個,資源配置文件清單如下:

[root@master01 monitor]# cat node-exporter.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: monitor
  labels:
    name: node-exporter
spec:
  selector:
    matchLabels:
     name: node-exporter
  template:
    metadata:
      labels:
        name: node-exporter
    spec:
      hostPID: true
      hostIPC: true
      hostNetwork: true
      containers:
      - name: node-exporter
        image: prom/node-exporter:latest
        ports:
        - containerPort: 9100
        resources:
          requests:
            cpu: 0.15
        securityContext:
          privileged: true
        args:
        - --path.procfs
        - /host/proc
        - --path.sysfs
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - '"^/(sys|proc|dev|host|etc)($|/)"'
        volumeMounts:
        - name: dev
          mountPath: /host/dev
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: rootfs
          mountPath: /rootfs
      tolerations:
      - key: "node-role.kubernetes.io/master"
        operator: "Exists"
        effect: "NoSchedule"
      volumes:
        - name: proc
          hostPath:
            path: /proc
        - name: dev
          hostPath:
            path: /dev
        - name: sys
          hostPath:
            path: /sys
        - name: rootfs
          hostPath:
            path: /

這里使用hostnetwork為true,使用宿主機網絡,會監控在宿主機上面的9100口;

驗證

# 創建 DaemonSet 資源類型的 Pod
[root@master01 monitor]# kubectl apply -f node-exporter.yaml
daemonset.apps/node-exporter created
[root@master01 monitor]#

# 驗證
[root@master01 monitor]# curl http://127.0.0.1:9100/metrics|more
  % Total % Received % Xferd Average Speed Time Time Time Current
                                 Dload Upload Total Spent Left Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
go_gc_duration_seconds_sum 0
go_gc_duration_seconds_count 0
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 6

查看pod

[root@master01 monitor]# kubectl get pods -n monitor -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
node-exporter-c67rd 1/1     Running 0          11m   172.31.117.228   node01 <none>           <none>
node-exporter-jrzfx 1/1     Running 0          11m   172.31.117.227   master03 <none>           <none>
node-exporter-mqsw5 1/1     Running 0          11m   172.31.117.225   master01 <none>           <none>
node-exporter-zhnl4 1/1     Running 0          11m   172.31.117.226   master02 <none>           <none>

 從上面可以看出,已經監控到所有宿主機 CPU、內存、負載、網絡流量、文件系統等指標信息,后續可供 Prometheus 收集。

kube-state-metrics

Kube-state-metrics 它是通過監聽 kube-apiserv括r 而生成有關資源對象的指標信息,主要包括Node、Pod、Service 、Endpoint、Namespace等資源的metric,需要注意的是kube-state-metrics只是簡單的提供一個metrics數據,並不會存儲這些指標數據,后續可以使用Prometheus 來抓取這些數據然后存儲,它主要關注的是業務資源workload的元數據信息。

這里也需要一個ServiceAccount帳戶並授權綁定。

[root@master01 monitor]# cat kube-state-metrics-rbac.yaml
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kube-state-metrics
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kube-state-metrics
rules:
- apiGroups: [""]
  resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
  verbs: ["list", "watch"]
- apiGroups: ["extensions"]
  resources: ["daemonsets", "deployments", "replicasets"]
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources: ["statefulsets"]
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources: ["cronjobs", "jobs"]
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources: ["horizontalpodautoscalers"]
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system

 創建 Pod 及service 配置文件

[root@master01 monitor]# cat kube-state-metrics-deployment-svc.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: kube-state-metrics
  template:
    metadata:
      labels:
        app: kube-state-metrics
    spec:
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: quay.io/coreos/kube-state-metrics:v1.9.5
        ports:
        - containerPort: 8080

---
apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: 'true'
  name: kube-state-metrics
  namespace: kube-system
  labels:
    app: kube-state-metrics
spec:
  ports:
  - name: kube-state-metrics
    port: 8080
    protocol: TCP
  selector:
    app: kube-state-metrics

 部署及查看

[root@master01 monitor]# kubectl apply -f kube-state-metrics-rbac.yaml
serviceaccount/kube-state-metrics created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
[root@master01 monitor]# kubectl apply -f kube-state-metrics-deployment-svc.yaml
deployment.apps/kube-state-metrics created
service/kube-state-metrics created
[root@master01 monitor]#

# 查看部署情況
[root@master01 monitor]# kubectl get clusterrolebinding |grep kube-state
kube-state-metrics ClusterRole/kube-state-metrics 4m4s
[root@master01 monitor]#
[root@master01 monitor]# kubectl get pods -n kube-system |grep kube-state-metrics
kube-state-metrics-84b8477f75-65gcg 1/1     Running 0          4m26s

驗證

后面安裝完成prometheus后,在監控指標中有很多kube_開頭的指標數據,都是由它抓取生成的。

metrics-server

前期准備

在較早的版本中,集群監控使用的是 heaspter,集群通過它的監控指標實現HPA、VPA和kubectl top等,在新版本中由 metrics-server 替代,至於原因,可以Google一下。metrics-server 是 kubernetes 監控體系中的核心組件之一,從 kubelet 中收集 Pod/Node 等資源指標,然后對這些指標數據進行聚合,最后再通過 Kube-apiserver 中 Metrics API( /apis/metrics.k8s.io/)公開暴露,metrics-server只存儲最新的指標數據(CPU/Memory),並不會把指標數據轉發給第三方目標,如果想使用 Metrics-server 指標數據,就需要對集群做一些特殊的配置,這些配置默認情況下,是不會安裝的,具體配置如下幾點,1、kube-apiserver要能訪問到metrics-server;2、kube-apiserver啟用參數中啟用聚合層功能;3、組件要有kubectl的認證配置並且綁定到Metrics-server;4、Pod/Node指標需要由Summary API通過Kubelet公開。

[root@master01 ~]# cd /etc/kubernetes/manifests/
[root@master01 manifests]# ls
kube-apiserver.yaml kube-controller-manager.yaml kube-scheduler.yaml
[root@master01 manifests]# pwd
/etc/kubernetes/manifests

 二進制安裝的話,進入到以上目錄,並修改kube-apiserver.yaml,主要是加上- --enable-aggregator-routing=true,其它的默認應該是有的,修改如下配置:

。。。
  - --requestheader-allowed-names=front-proxy-client
    - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt
    - --requestheader-extra-headers-prefix=X-Remote-Extra-
    - --requestheader-group-headers=X-Remote-Group
    - --requestheader-username-headers=X-Remote-User
    - --enable-aggregator-routing=true
。。。。

 下載軟件包

git clone https://github.com/kubernetes-sigs/metrics-server.git

 安裝

# 下載目錄中有以下文件,可以自行查看下
[root@master01 kubernetes]# pwd
/root/monitor/metrics-server/deploy/kubernetes
[root@master01 kubernetes]# ll
總用量 28
-rw-r--r-- 1 root root  397 3月 31 14:23 aggregated-metrics-reader.yaml
-rw-r--r-- 1 root root  303 3月 31 14:23 auth-delegator.yaml
-rw-r--r-- 1 root root  324 3月 31 14:23 auth-reader.yaml
-rw-r--r-- 1 root root  298 3月 31 14:23 metrics-apiservice.yaml
-rw-r--r-- 1 root root 1184 3月 31 14:23 metrics-server-deployment.yaml
-rw-r--r-- 1 root root  297 3月 31 14:23 metrics-server-service.yaml
-rw-r--r-- 1 root root  532 3月 31 14:23 resource-reader.yaml
[root@master01 kubernetes]#

# 部署
[root@master01 kubernetes]# kubectl apply -f .
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
serviceaccount/metrics-server created
deployment.apps/metrics-server created
service/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
[root@master01 kubernetes]#

坑一

root@master01 kubernetes]# kubectl top node
error: metrics not available yet
[root@master01 kubernetes]#

# 查看錯誤日志
unable to fully collect metrics: [unable to fully scrape metrics from source kubelet_summary:master01: unable to fetch metrics from Kubelet master01 (master01): Get https://master01:10250/stats/summary?only_cpu_and_memory=true: dial tcp: lookup master01 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:master03: unable to fetch metrics from Kubelet master03 (master03): Get https://master03:10250/stats/summary?only_cpu_and_memory=true: dial tcp: lookup master03 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:master02: unable to fetch metrics from Kubelet master02 (master02): Get https://master02:10250/stats/summary?only_cpu_and_memory=true: dial tcp: lookup master02 on 10.96.0.10:53: no such host, unable to fully scrape metrics from source kubelet_summary:node01: unable to fetch metrics from Kubelet node01 (node01): Get https://node01:10250/stats/summary?only_cpu_and_memory=true: dial tcp: lookup node01 on 10.96.0.10:53: no such host]

這個坑的解決方式是 - --kubelet-insecure-tls ,修改 metrics-server-deployment.yaml 添加這個參數,刪除再重新創建

坑二

[root@master01 kubernetes]# kubectl top node
Error from server (ServiceUnavailable): the server is currently unable to handle the request (get nodes.metrics.k8s.io)
[root@master01 kubernetes]#

[root@master01 kubernetes]# kubectl logs -f metrics-server-64b57fd654-bt6fx -n kube-system
E0331 07:03:59.658787       1 reststorage.go:135] unable to fetch node metrics for node "master03": no metrics known for node
E0331 07:03:59.658793       1 reststorage.go:135] unable to fetch node metrics for node "node01": no metrics known for node
。。。

[root@master01 kubernetes]#

 解決方式是添加 - --kubelet-preferred-address-types=InternalIP 啟動參數 ,修改 metrics-server-deployment.yaml 添加這個參數,最終如下所示,再刪除重建即可

。。。
          - --cert-dir=/tmp
          - --secure-port=4443
          - --kubelet-preferred-address-types=InternalIP
          - --kubelet-insecure-tls
。。。

 驗證

注意一下,剛開始有可能會出錯,稍等一下即可,出錯后,及時查看日志;

[root@master01 kubernetes]# kubectl top pods
W0331 15:07:34.977285   30613 top_pod.go:274] Metrics not available for pod default/default-deployment-nginx-fffdfd45-vh8sc, age: 3h45m6.977273348s
error: Metrics not available for pod default/default-deployment-nginx-fffdfd45-vh8sc, age: 3h45m6.977273348s
[root@master01 kubernetes]#

[root@master01 ~]# kubectl top node
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
master01 179m 8% 2263Mi 61%
master02 139m 6% 2184Mi 59%
master03 146m 7% 2280Mi 61%
node01 107m 5% 1825Mi 49%
[root@master01 ~]# kubectl top pods
NAME CPU(cores) MEMORY(bytes)
default-deployment-nginx-fffdfd45-vh8sc 0m 1Mi
[root@master01 ~]#

 

 



 



 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM