Echart:
ECharts,一個純 Javascript 的圖表庫,可以流暢的運行在 PC 和移動設備上,兼容當前絕大部分瀏覽器(IE8/9/10/11,Chrome,Firefox,Safari等),底層依賴輕量級的 Canvas 類庫 ZRender,提供直觀,生動,可交互,可高度個性化定制的數據可視化圖表。
ECharts 提供了常規的折線圖,柱狀圖,散點圖,餅圖,K線圖,用於統計的盒形圖,用於地理數據可視化的地圖,熱力圖,線圖,用於關系數據可視化的關系圖,treemap,多維數據可視化的平行坐標,還有用於 BI 的漏斗圖,儀表盤,並且支持圖與圖之間的混搭。
第一步:獲取實時的新冠肺炎數據
import requests
from lxml import etree
import re
import json
class Get_data():
#獲取數據
def get_data(self):
response = requests.get("https://voice.baidu.com/act/newpneumonia/newpneumonia/")
with open('html.txt', 'w') as file:
file.write(response.text)
#提取更新時間
def get_time(self):
with open('html.txt','r') as file:
text = file.read()
#正則表達式,返回的是列表,提取最新更新時間
time = re.findall('"mapLastUpdatedTime":"(.*?)"', text)[0]
return time
#解析數據
def parse_data(self):
with open('html.txt', 'r') as file:
text = file.read()
html = etree.HTML(text)
result = html.xpath('//script[@type="application/json"]/text()')
result = result[0]
result = json.loads(result)
#轉換成字符串
result = json.dumps(result['component'][0]['caseList'])
with open('data.json', 'w') as file:
file.write(result)
print('數據已寫入json文件。。。')
第二步:繪制地圖
pyecharts的地圖官方源碼:
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (
Map()
.add("商家A", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="Map-VisualMap(連續型)"),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
效果:

第二步:數據可視化地圖
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
import os
class Draw_map():
#判斷是否存在存放地圖的文件夾,沒有的話創建文件夾
def __init__(self):
if not os.path.exists('./map/china'):
os.makedirs('./map/china')
#將RGB轉換為繪制地圖需要的十六進制的表達形式
def get_colour(self,a,b,c):
result = '#' + ''.join(map((lambda x: "%02x" % x), (a,b,c)))
return result.upper()
#繪制每個城市的地圖
def to_map_city(self,area, variate,province,update_time):
#顯示標識欄的顏色分層表示
pieces = [
{"max": 99999999, "min": 10000, "label": "≥10000", "color": self.get_colour(102, 2, 8)},
{"max": 9999, "min": 1000, "label": "1000-9999", "color": self.get_colour(140, 13, 13)},
{"max": 999, "min": 500, "label": "500-999", "color": self.get_colour(204, 41, 41)},
{"max": 499, "min": 100, "label": "100-499", "color": self.get_colour(255, 123, 105)},
{"max": 99, "min": 50, "label": "50-99", "color": self.get_colour(255, 170, 133)},
{"max": 49, "min": 10, "label": "10-49", "color": self.get_colour(255,202,179)},
{"max": 9, "min": 1, "label": "1-9", "color": self.get_colour(255,228,217)},
{"max": 0, "min": 0, "label": "0", "color": self.get_colour(255,255,255)},
]
#繪制地圖
c = (
# 設置地圖大小
Map(init_opts=opts.InitOpts(width = '1000px', height='880px'))
.add("累計確診人數", [list(z) for z in zip(area, variate)], province, is_map_symbol_show=False)
# 設置全局變量 is_piecewise設置數據是否連續,split_number設置為分段數,pices可自定義數據分段
# is_show設置是否顯示圖例
.set_global_opts(
title_opts=opts.TitleOpts(title="%s地區疫情地圖分布"%(province), subtitle = '截止%s %s省疫情分布情況'%(update_time,province), pos_left = "center", pos_top = "10px"),
legend_opts=opts.LegendOpts(is_show = False),
visualmap_opts=opts.VisualMapOpts(max_=200,is_piecewise=True,
pieces=pieces,
),
)
.render("./map/china/{}疫情地圖.html".format(province))
)
# 繪制全國的地圖
def to_map_china(self, area,variate,update_time):
pieces = [{"max": 999999, "min": 1001, "label": ">10000", "color": "#8A0808"},
{"max": 9999, "min": 1000, "label": "1000-9999", "color": "#B40404"},
{"max": 999, "min": 100, "label": "100-999", "color": "#DF0101"},
{"max": 99, "min": 10, "label": "10-99", "color": "#F78181"},
{"max": 9, "min": 1, "label": "1-9", "color": "#F5A9A9"},
{"max": 0, "min": 0, "label": "0", "color": "#FFFFFF"},
]
c = (
# 設置地圖大小
Map(init_opts=opts.InitOpts(width='1000px', height='880px'))
.add("累計確診人數", [list(z) for z in zip(area, variate)], "china", is_map_symbol_show=False)
.set_global_opts(
title_opts=opts.TitleOpts(title="中國疫情地圖分布", subtitle='截止%s 中國疫情分布情況'%(update_time), pos_left="center", pos_top="10px"),
legend_opts=opts.LegendOpts(is_show=False),
visualmap_opts=opts.VisualMapOpts(max_=200, is_piecewise=True,
pieces=pieces,
),
)
.render("./map/中國疫情地圖.html")
)
第三步:
使用數據來繪制地圖:
import json
import map_draw
import data_get
with open('data.json','r') as file:
data = file.read()
data = json.loads(data)
map = map_draw.Draw_map()
datas = data_get.Get_data()
datas.get_data()
update_time = datas.get_time()
datas.parse_data()
#中國疫情地圖數據
def china_map():
area = []
confirmed = []
for each in data:
area.append(each['area'])
confirmed.append(each['confirmed'])
map.to_map_china(area,confirmed,update_time)
#省份疫情地圖數據
def province_map():
for each in data:
city = []
confirmeds = []
province = each['area']
for each_city in each['subList']:
city.append(each_city['city']+"市")
confirmeds.append(each_city['confirmed'])
map.to_map_city(city,confirmeds,province,update_time)
if province == '上海' or '北京' or '天津' or '重慶' or '香港':
for each_city in each['subList']:
city.append(each_city['city'])
confirmeds.append(each_city['confirmed'])
map.to_map_city(city,confirmeds,province,update_time)
效果:
全國:

內蒙古自治區:

本次內容參考自:
https://pyecharts.org/#/zh-cn/intro
http://gallery.pyecharts.org/#/Map/README
https://www.jianshu.com/p/3e71d73694fa
https://www.jianshu.com/p/d2474e9bce6e
https://www.bilibili.com/medialist/play/ml317727151
