目前有個想法,就是將UI截圖與自動化截圖進行對比。不一致的情況下提示錯誤
截圖對比方法有:
https://www.cnblogs.com/dcb3688/p/4610660.html
import cv2 import numpy as np # 均值哈希算法 def aHash(img): # 縮放為8*8 img = cv2.resize(img, (8, 8)) # 轉換為灰度圖 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # s為像素和初值為0,hash_str為hash值初值為'' s = 0 hash_str = '' # 遍歷累加求像素和 for i in range(8): for j in range(8): s = s + gray[i, j] # 求平均灰度 avg = s / 64 # 灰度大於平均值為1相反為0生成圖片的hash值 for i in range(8): for j in range(8): if gray[i, j] > avg: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 差值感知算法 def dHash(img): # 縮放8*8 img = cv2.resize(img, (9, 8)) # 轉換灰度圖 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hash_str = '' # 每行前一個像素大於后一個像素為1,相反為0,生成哈希 for i in range(8): for j in range(8): if gray[i, j] > gray[i, j + 1]: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 感知哈希算法(pHash) def pHash(img): # 縮放32*32 img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC # 轉換為灰度圖 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 將灰度圖轉為浮點型,再進行dct變換 dct = cv2.dct(np.float32(gray)) # opencv實現的掩碼操作 dct_roi = dct[0:8, 0:8] hash = [] avreage = np.mean(dct_roi) for i in range(dct_roi.shape[0]): for j in range(dct_roi.shape[1]): if dct_roi[i, j] > avreage: hash.append(1) else: hash.append(0) return hash # 通過得到RGB每個通道的直方圖來計算相似度 def classify_hist_with_split(image1, image2, size=(256, 256)): # 將圖像resize后,分離為RGB三個通道,再計算每個通道的相似值 image1 = cv2.resize(image1, size) image2 = cv2.resize(image2, size) sub_image1 = cv2.split(image1) sub_image2 = cv2.split(image2) sub_data = 0 for im1, im2 in zip(sub_image1, sub_image2): sub_data += calculate(im1, im2) sub_data = sub_data / 3 return sub_data # 計算單通道的直方圖的相似值 def calculate(image1, image2): hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0]) hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0]) # 計算直方圖的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i])) else: degree = degree + 1 degree = degree / len(hist1) return degree # Hash值對比 def cmpHash(hash1, hash2): n = 0 # hash長度不同則返回-1代表傳參出錯 if len(hash1)!=len(hash2): return -1 # 遍歷判斷 for i in range(len(hash1)): # 不相等則n計數+1,n最終為相似度 if hash1[i] != hash2[i]: n = n + 1 return n img1 = cv2.imread('openpic/x1y2.png') # 11--- 16 ----13 ---- 0.43 img2 = cv2.imread('openpic/x2y4.png') img1 = cv2.imread('openpic/x3y5.png') # 10----11 ----8------0.25 img2 = cv2.imread('openpic/x9y1.png') img1 = cv2.imread('openpic/x1y2.png') # 6------5 ----2--------0.84 img2 = cv2.imread('openpic/x2y6.png') img1 = cv2.imread('openpic/t1.png') # 14------19---10--------0.70 img2 = cv2.imread('openpic/t2.png') img1 = cv2.imread('openpic/t1.png') # 39------33---18--------0.58 img2 = cv2.imread('openpic/t3.png') hash1 = aHash(img1) hash2 = aHash(img2) n = cmpHash(hash1, hash2) print('均值哈希算法相似度:', n) hash1 = dHash(img1) hash2 = dHash(img2) n = cmpHash(hash1, hash2) print('差值哈希算法相似度:', n) hash1 = pHash(img1) hash2 = pHash(img2) n = cmpHash(hash1, hash2) print('感知哈希算法相似度:', n) n = classify_hist_with_split(img1, img2) print('三直方圖算法相似度:', n)
由於截圖對比要求較高,我選擇差值哈希算法。
具體截圖代碼如下
對比代碼
結果: