20/04/28 19:40:00 ERROR JobScheduler: Error generating jobs for time 1588074000000 ms java.lang.IllegalArgumentException: requirement failed: numRecords must not be negative at scala.Predef$.require(Predef.scala:224) at org.apache.spark.streaming.scheduler.StreamInputInfo.<init>(InputInfoTracker.scala:38) at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:233) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341) at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:336) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:334) at scala.Option.orElse(Option.scala:289) at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:331) at org.apache.spark.streaming.dstream.TransformedDStream$$anonfun$6.apply(TransformedDStream.scala:42) at org.apache.spark.streaming.dstream.TransformedDStream$$anonfun$6.apply(TransformedDStream.scala:42) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.streaming.dstream.TransformedDStream.compute(TransformedDStream.scala:42) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:342) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341) at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:341)
Spark streaming2.2.0 + kafka_2.11_0.10.0.1
設置 enable.auto.commit 為 false,通過ZK手動維護offset,程序正常運行,分別通過zkClint和kafka腳本查看偏移量,發現kafka中偏移量確實沒有提交,zk中每個批次正常提交,程序stop,然后再次啟動報上圖錯誤。
異常原因:
定位代碼:
此處判斷了numRecords>=0,否則會拋出異常
rdd.count的邏輯
fromOffset來自zk中保存;
untilOffset通過DirectKafkaInputDStream第211行
計算得到最新的offset,然后使用spark.streaming.kafka.maxRatePerPartition
做clamp,得到允許的最大untilOffsets,而此時kafka中offset並沒有提交,偏移量小於zk中的偏移量,導致計算的numRecords為負數。
解決辦法:
手動設置zk中偏移量和kafka中相同,並且在kafka異步提交偏移量。