Python實現二叉查找樹


Python實現二叉查找樹

二叉查找樹

  • 所有 key 小於 V 的都被存儲在 V 的左子樹
  • 所有 key 大於 V 的都存儲在 V 的右子樹

BST 的節點

class BSTNode(object):
    def __init__(self, key, value, left=None, right=None):
        self.key, self.value, self.left, self.right = key, value, left, right

二叉樹查找

如何查找一個指定的節點呢,根據定義我們知道每個內部節點左子樹的 key 都比它小,右子樹的 key 都比它大,所以 對於帶查找的節點 search_key,從根節點開始,如果 search_key 大於當前 key,就去右子樹查找,否則去左子樹查找

NODE_LIST = [
    {'key': 60, 'left': 12, 'right': 90, 'is_root': True},
    {'key': 12, 'left': 4, 'right': 41, 'is_root': False},
    {'key': 4, 'left': 1, 'right': None, 'is_root': False},
    {'key': 1, 'left': None, 'right': None, 'is_root': False},
    {'key': 41, 'left': 29, 'right': None, 'is_root': False},
    {'key': 29, 'left': 23, 'right': 37, 'is_root': False},
    {'key': 23, 'left': None, 'right': None, 'is_root': False},
    {'key': 37, 'left': None, 'right': None, 'is_root': False},
    {'key': 90, 'left': 71, 'right': 100, 'is_root': False},
    {'key': 71, 'left': None, 'right': 84, 'is_root': False},
    {'key': 100, 'left': None, 'right': None, 'is_root': False},
    {'key': 84, 'left': None, 'right': None, 'is_root': False},
]


class BSTNode(object):
    def __init__(self, key, value, left=None, right=None):
        self.key, self.value, self.left, self.right = key, value, left, right


class BST(object):
    def __init__(self, root=None):
        self.root = root

    @classmethod
    def build_from(cls, node_list):
        cls.size = 0
        key_to_node_dict = {}
        for node_dict in node_list:
            key = node_dict['key']
            key_to_node_dict[key] = BSTNode(key, value=key)   # 這里值和key一樣的

        for node_dict in node_list:
            key = node_dict['key']
            node = key_to_node_dict[key]
            if node_dict['is_root']:
                root = node
            node.left = key_to_node_dict.get(node_dict['left'])
            node.right = key_to_node_dict.get(node_dict['right'])
            cls.size += 1
        return cls(root)

    def _bst_search(self, subtree, key):
        """
        subtree.key小於key則去右子樹找  因為 左子樹<subtree.key<右子樹
        subtree.key大於key則去左子樹找  因為 左子樹<subtree.key<右子樹
        :param subtree:
        :param key:
        :return:
        """
        if subtree is None:
            return None
        elif subtree.key < key:
            self._bst_search(subtree.right, key)
        elif subtree.key > key:
            self._bst_search(subtree.left, key)
        else:
            return subtree

    def get(self, key, default=None):
        """
        查找樹
        :param key:
        :param default:
        :return:
        """
        node = self._bst_search(self.root, key)
        if node is None:
            return default
        else:
            return node.value

    def _bst_min_node(self, subtree):
        """
        查找最小值的樹
        :param subtree:
        :return:
        """
        if subtree is None:
            return None
        elif subtree.left is None:
            # 找到左子樹的頭
            return subtree
        else:
            return self._bst_min_node(subtree.left)

    def bst_min(self):
        """
        獲取最小樹的value
        :return:
        """
        node = self._bst_min_node(self.root)
        if node is None:
            return None
        else:
            return node.value

    def _bst_max_node(self, subtree):
        """
        查找最大值的樹
        :param subtree:
        :return:
        """
        if subtree is None:
            return None
        elif subtree.right is None:
            # 找到右子樹的頭
            return subtree
        else:
            return self._bst_min_node(subtree.right)

    def bst_max(self):
        """
        獲取最大樹的value
        :return:
        """
        node = self._bst_max_node(self.root)
        if node is None:
            return None
        else:
            return node.value

    def _bst_insert(self, subtree, key, value):
        """
        二叉查找樹插入
        :param subtree:
        :param key:
        :param value:
        :return:
        """
        # 插入的節點一定是根節點,包括 root 為空的情況
        if subtree is None:
            subtree = BSTNode(key, value)
        elif subtree.key > key:
            subtree.left = self._bst_insert(subtree.left, key, value)
        elif subtree.key < key:
            subtree.right = self._bst_insert(subtree.right, key, value)
        return subtree

    def add(self, key, value):
        # 先去查一下看節點是否已存在
        node = self._bst_search(self.root, key)
        if node is not None:
            # 更新已經存在的 key
            node.value = value
            return False
        else:
            self.root = self._bst_insert(self.root, key, value)
            self.size += 1

    def _bst_remove(self, subtree, key):
        """
        刪除並返回根節點
        :param subtree:
        :param key:
        :return:
        """
        if subtree is None:
            return None
        elif subtree.key > key:
            subtree.right = self._bst_remove(subtree.right, key)
            return subtree
        elif subtree.key < key:
            subtree.left = self._bst_remove(subtree.left, key)
            return subtree
        else:
            # 找到了需要刪除的節點
            # 要刪除的節點是葉節點 返回 None 把其父親指向它的指針置為 None
            if subtree.left is None and subtree.right is None:
                return None
            # 要刪除的節點有一個孩子
            elif subtree.left is None or subtree.right is None:
                # 返回它的孩子並讓它的父親指過去
                if subtree.left is not None:
                    return subtree.left
                else:
                    return subtree.right
            else:
                # 有兩個孩子,尋找后繼節點替換,並從待刪節點的右子樹中刪除后繼節點
                # 后繼節點是待刪除節點的右孩子之后的最小節點
                # 中(根)序得到的是一個排列好的列表 后繼節點在待刪除節點的后邊
                successor_node = self._bst_min_node(subtree.right)
                # 用后繼節點替換待刪除節點即可保持二叉查找樹的特性 左<根<右
                subtree.key, subtree.value = successor_node.key, successor_node.value
                # 從待刪除節點的右子樹中刪除后繼節點,並更新其刪除后繼節點后的右子樹
                subtree.right = self._bst_remove(subtree.right, successor_node.key)
                return subtree

    def remove(self, key):
        assert key in self
        self.size -= 1
        return self._bst_remove(self.root, key)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM