文章目錄
基本數據源
文件數據源
注意事項
1.SparkStreaming不支持監控嵌套目錄
2.文件進入dataDirectory(受監控的文件夾)需要通過移動或者重命名實現
3.一旦文件移動進目錄,則不能再修改,即使修改也不會讀取修改后的數據
步驟
一、創建maven工程並導包
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.0</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
<!-- <verbal>true</verbal>-->
</configuration>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.1.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
二、在HDFS創建目錄,並上傳要做測試的數據
cd /export/servers/
vim wordcount.txt
hello world
abc test
hadoop hive
HDFS上創建目錄
hdfs dfs -mkdir /stream_data
hdfs dfs -put wordcount.txt /stream_data
三、開發SparkStreaming代碼
package cn.itcast.sparkstreaming.demo1
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object getHdfsFiles {
// 自定義updateFunc函數
/** * updateFunc需要兩個參數 * * @param newValues 新輸入數據計數累加的值 * @param runningCount 歷史數據計數累加完成的值 * @return 返回值是Option * * Option是scala中比較特殊的類,是some和none的父類,主要為了解決null值的問題 */
def updateFunc(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = {
val finalResult: Int = newValues.sum + runningCount.getOrElse(0)
Option(finalResult)
}
def main(args: Array[String]): Unit = {
//獲取SparkConf
val sparkConf: SparkConf = new SparkConf().setAppName("getHdfsFiles_to_wordcount").setMaster("local[6]").set("spark.driver.host", "localhost")
// 獲取SparkContext
val sparkContext = new SparkContext(sparkConf)
// 設置日志級別
sparkContext.setLogLevel("WARN")
// 獲取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
// 將歷史結果都保存到一個路徑下
streamingContext.checkpoint("./stream.check")
// 讀取HDFS上的文件
val fileStream: DStream[String] = streamingContext.textFileStream("hdfs://node01:8020/stream_data")
// 對讀取到的文件進行計數操作
val flatMapStream: DStream[String] = fileStream.flatMap(x => x.split(" "))
val wordAndOne: DStream[(String, Int)] = flatMapStream.map(x => (x, 1))
// reduceByKey不會將歷史消息的值進行累加,所以需要用到updateStateByKey,需要的參數是updateFunc,需要自定義
val byKey: DStream[(String, Int)] = wordAndOne.updateStateByKey(updateFunc)
//輸出結果
byKey.print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
四、運行代碼后,往HDFS文件夾上傳文件
五、控制台輸出結果
-------------------------------------------
Time: 1586856345000 ms
-------------------------------------------
-------------------------------------------
Time: 1586856350000 ms
-------------------------------------------
-------------------------------------------
Time: 1586856355000 ms
-------------------------------------------
(abc,1)
(world,1)
(hadoop,1)
(hive,1)
(hello,1)
(test,1)
-------------------------------------------
Time: 1586856360000 ms
-------------------------------------------
(abc,1)
(world,1)
(hadoop,1)
(hive,1)
(hello,1)
(test,1)
-------------------------------------------
Time: 1586856365000 ms
-------------------------------------------
(abc,1)
(world,1)
(hadoop,1)
(hive,1)
(hello,1)
(test,1)
-------------------------------------------
Time: 1586856370000 ms
-------------------------------------------
(abc,2)
(world,2)
(hadoop,2)
(hive,2)
(hello,2)
(test,2)
-------------------------------------------
Time: 1586856375000 ms
-------------------------------------------
(abc,2)
(world,2)
(hadoop,2)
(hive,2)
(hello,2)
(test,2)
自定義數據源
步驟
一、使用nc工具給指定端口發送數據
nc -lk 9999
二、開發代碼
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
object CustomReceiver {
/** * 自定義updateFunc函數 * @param newValues * @param runningCount * @return */
def updateFunc(newValues:Seq[Int], runningCount:Option[Int]):Option[Int] = {
val finalResult: Int = newValues.sum + runningCount.getOrElse(0)
Option(finalResult)
}
def main(args: Array[String]): Unit = {
// 獲取SparkConf
val sparkConf: SparkConf = new SparkConf().setAppName("CustomReceiver").setMaster("local[6]").set("spark.driver.host", "localhost")
// 獲取SparkContext
val sparkContext = new SparkContext(sparkConf)
sparkContext.setLogLevel("WARN")
// 獲取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
streamingContext.checkpoint("./stream_check")
// 讀取自定義數據源的數據
val stream: ReceiverInputDStream[String] = streamingContext.receiverStream(new MyReceiver("node01", 9999))
// 對數據進行切割、計數操作
val mapStream: DStream[String] = stream.flatMap(x => x.split(" "))
val wordAndOne: DStream[(String, Int)] = mapStream.map((_, 1))
val byKey: DStream[(String, Int)] = wordAndOne.updateStateByKey(updateFunc)
// 輸出結果
byKey.print()
streamingContext.start()
streamingContext.awaitTermination()
}
}
import java.io.{BufferedReader, InputStream, InputStreamReader}
import java.net.Socket
import java.nio.charset.StandardCharsets
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver
class MyReceiver(host:String,port:Int) extends Receiver[String](StorageLevel.MEMORY_AND_DISK_2){
/** * 自定義receive方法接收socket數據,並調用store方法將數據保存起來 */
private def receiverDatas(): Unit ={
// 接收socket數據
val socket = new Socket(host, port)
// 獲取socket數據輸入流
val stream: InputStream = socket.getInputStream
//通過BufferedReader ,將輸入流轉換為字符串
val reader = new BufferedReader(new InputStreamReader(stream,StandardCharsets.UTF_8))
var line: String = null
//判斷讀取到的數據不為空且receiver沒有被停掉時
while ((line = reader.readLine()) != null && !isStopped()){
store(line)
}
stream.close()
socket.close()
reader.close()
}
/** * 重寫onStart和onStop方法,主要是onStart,onStart方法會被反復調用 */
override def onStart(): Unit = {
// 啟動通過連接接收數據的線程
new Thread(){
//重寫run方法
override def run(): Unit = {
// 定義一個receiverDatas接收socket數據
receiverDatas()
}
}
}
// 停止結束的時候被調用
override def onStop(): Unit = {
}
}
RDD隊列
步驟
一、開發代碼
package cn.itcast.sparkstreaming.demo3
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
object QueneReceiver {
def main(args: Array[String]): Unit = {
//獲取SparkConf
val sparkConf: SparkConf = new SparkConf().setMaster("local[6]").setAppName("queneReceiver").set("spark.driver.host", "localhost")
//獲取SparkContext
val sparkContext = new SparkContext(sparkConf)
sparkContext.setLogLevel("WARN")
//獲取StreamingContext
val streamingContext = new StreamingContext(sparkContext, Seconds(5))
val queue = new mutable.SynchronizedQueue[RDD[Int]]
// 需要參數 queue: Queue[RDD[T]]
val inputStream: InputDStream[Int] = streamingContext.queueStream(queue)
// 對DStream進行操作
val mapStream: DStream[Int] = inputStream.map(x => x * 2)
mapStream.print()
streamingContext.start()
//定義一個RDD隊列
for (x <- 1 to 100){
queue += streamingContext.sparkContext.makeRDD(1 to 10)
Thread.sleep(3000)
}
streamingContext.awaitTermination()
}
}