爬取前程無憂職位信息


一主題網絡爬蟲設計方案

1.主題式網絡爬蟲名稱:爬取前程無憂職位信息

2.主題式網絡爬蟲爬取的內容

本爬蟲就要爬取公司名稱,工作地點,薪資,學歷,工作經驗,招聘人數,公司規模,公司類型,公司福利和發布時間。

3.主題式網絡爬蟲設計方案概述

實驗思路:爬取數據,數據清洗,數據可視化。

二.主題頁面結構的結構特征分析

打開前程無憂,找到職位搜索,點右鍵檢查元素。

爬取信息,儲存在Excel中

import urllib.request
import xlwt
import re
import urllib.parse
#import time
header={
        'Host':'search.51job.com',
        'Upgrade-Insecure-Requests':'1',
        'User-Agent':'MOzilla/5.0(Windows NT 10.0;Win64; x64) AppleWebkit/537.36(KHTML,like Gecko) chrome/78.0.3904.108 safari/537.36'
        }
def getfront(page,item):   #page是頁數,item是輸入的字符串,見后文
    result = urllib.parse.quote(item)   #先把字符串轉成十六進制編碼
    ur1 = result+',2,'+str(page)+'.html'
    ur2 = 'https://search.51job.com/list/000000,000000,0000,00,9,99,'
    res = ur2+ur1
    a = urllib.request.urlopen(res)
    html = a.read().decode('gbk')   #讀取源代碼並轉為unicode
    return html
def getInformation(html):
    reg = re.compile(r'class="t1 ">.*? <a target="_blank" title="(.*?)" href="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)" href="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*?<span class="t5">(.*?)</span>.*?',re.S)#匹配換行符
    items=re.findall(reg,html)
    return items
#新建表格空間
excel1 = xlwt.Workbook()
# 設置單元格格式
sheet1 = excel1.add_sheet('Job', cell_overwrite_ok=True)
sheet1.write(0, 0, '序號')
sheet1.write(0, 1, '職位')
sheet1.write(0, 2, '公司名稱')
sheet1.write(0, 3, '公司地點')
sheet1.write(0, 4, '公司性質')
sheet1.write(0, 5, '薪資')
sheet1.write(0, 6, '學歷要求')
sheet1.write(0, 7, '工作經驗')
sheet1.write(0, 8, '公司規模')
sheet1.write(0, 9, '公司類型')
sheet1.write(0, 10,'公司福利')
sheet1.write(0, 11,'發布時間')
number = 1
item = input()
for j in range(1,10000):   #頁數自己隨便改
    try:
        print("正在爬取第"+str(j)+"頁數據...")
        html = getfront(j,item)      #調用獲取網頁原碼
        for i in getInformation(html):
            try:
                url1 = i[1]          #職位網址
                res1 = urllib.request.urlopen(url1).read().decode('gbk')
                company = re.findall(re.compile(r'<div class="com_tag">.*?<p class="at" title="(.*?)"><span class="i_flag">.*?<p class="at" title="(.*?)">.*?<p class="at" title="(.*?)">.*?',re.S),res1)
                job_need = re.findall(re.compile(r'<p class="msg ltype".*?>.*?  <span>|</span>  (.*?)  <span>|</span>  (.*?)  <span>|</span>  .*?</p>',re.S),res1)
                welfare = re.findall(re.compile(r'<span class="sp4">(.*?)</span>',re.S),res1)
                print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6])
                sheet1.write(number,0,number)
                sheet1.write(number,1,i[0])
                sheet1.write(number,2,i[2])
                sheet1.write(number,3,i[4])
                sheet1.write(number,4,company[0][0])
                sheet1.write(number,5,i[5])
                sheet1.write(number,6,job_need[1][0])
                sheet1.write(number,7,job_need[2][0])
                sheet1.write(number,8,company[0][1])
                sheet1.write(number,9,company[0][2])
                sheet1.write(number,10,("  ".join(str(i) for i in welfare)))
                sheet1.write(number,11,i[6])
                number+=1
                excel1.save("51job.xls")
                time.sleep(0.3) #休息間隔,避免爬取海量數據時被誤判為攻擊,IP遭到封禁
            except:
                pass
    except:
        pass

  

 

 

 

數據清洗:

1.首先打開文件,出現有空值(NAN)的信息,直接刪除整行,職位出錯,及其他地方信息出錯,如在學歷中“召幾人”,薪資單位不一致並保存到另一個文件。

#coding:utf-8
import pandas as pd
import re
#除此之外還要安裝xlrd包

data = pd.read_excel(r'51job.xls',sheet_name='Job')
result = pd.DataFrame(data)
a = result.dropna(axis=0,how='any')
pd.set_option('display.max_rows',None)     #輸出全部行,不省略
b = u'數據'
number = 1
li = a['職位']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)
    except:
        pass
    
b2= u'人'
li2 = a['學歷要求']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            #print(number,li2[i])
            number+=1
            a = a.drop(i,axis=0)
    except:
        pass

b3 =u'萬/年'
b4 =u'千/月'
li3 = a['薪資']
#注釋部分的print都是為了調試用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,'.2f')              #轉換成浮點型並保留兩位小數
            max_ = format(float(x[1])/12,'.2f')
            li3[i][1] = min_+'-'+max_+u'萬/月'
        if b4 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,'.2f')
            max_ = format(float(x[1])/10,'.2f')
            li3[i][1] = str(min_+'-'+max_+'萬/月')
        print(i,li3[i])

    except:
        pass

#保存到另一個文件
a.to_excel('51job2.xls', sheet_name='Job', index=False)

  

 

  

數據可視化:

繪制工作經驗-薪資圖、學歷-薪資圖、學歷圓環圖:

先打開文件,創建多個列表單獨存放‘薪資’,‘學歷要求’等信息。

file = pd.read_excel(r'51job2.xls',sheet_name='Job')
f = pd.DataFrame(file)
pd.set_option('display.max_rows',None)
add = f['公司地點']
sly = f['薪資']
edu = f['學歷要求']
exp = f['工作經驗']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split('-')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r'\d*\.?\d+',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass
   
min_s=[]							#定義存放最低薪資的列表
max_s=[]							#定義存放最高薪資的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])

my_df = pd.DataFrame({'experience':experience, 'min_salay' : min_s, 'max_salay' : max_s})				#關聯工作經驗與薪資
data1 = my_df.groupby('experience').mean()['min_salay'].plot(kind='line')
plt.show()
my_df2 = pd.DataFrame({'education':education, 'min_salay' : min_s, 'max_salay' : max_s})				#關聯學歷與薪資
data2 = my_df2.groupby('education').mean()['min_salay'].plot(kind='line')
plt.show()
    
def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)

attr= dir1.keys()
value = dir1.values()
pie = Pie("學歷要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype='radius',
        is_legend_show=False, is_label_show=True,legend_orient='vertical')
pie.render('學歷要求玫瑰圖.html')

  

 

所有代碼,如下:

import urllib.request
import xlwt
import re
import urllib.parse
#import time
header={
        'Host':'search.51job.com',
        'Upgrade-Insecure-Requests':'1',
        'User-Agent':'MOzilla/5.0(Windows NT 10.0;Win64; x64) AppleWebkit/537.36(KHTML,like Gecko) chrome/78.0.3904.108 safari/537.36'
        }
def getfront(page,item):   #page是頁數,item是輸入的字符串,見后文
    result = urllib.parse.quote(item)   #先把字符串轉成十六進制編碼
    ur1 = result+',2,'+str(page)+'.html'
    ur2 = 'https://search.51job.com/list/000000,000000,0000,00,9,99,'
    res = ur2+ur1
    a = urllib.request.urlopen(res)
    html = a.read().decode('gbk')   #讀取源代碼並轉為unicode
    return html
def getInformation(html):
    reg = re.compile(r'class="t1 ">.*? <a target="_blank" title="(.*?)" href="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)" href="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*?<span class="t5">(.*?)</span>.*?',re.S)#匹配換行符
    items=re.findall(reg,html)
    return items
#新建表格空間
excel1 = xlwt.Workbook()
# 設置單元格格式
sheet1 = excel1.add_sheet('Job', cell_overwrite_ok=True)
sheet1.write(0, 0, '序號')
sheet1.write(0, 1, '職位')
sheet1.write(0, 2, '公司名稱')
sheet1.write(0, 3, '公司地點')
sheet1.write(0, 4, '公司性質')
sheet1.write(0, 5, '薪資')
sheet1.write(0, 6, '學歷要求')
sheet1.write(0, 7, '工作經驗')
sheet1.write(0, 8, '公司規模')
sheet1.write(0, 9, '公司類型')
sheet1.write(0, 10,'公司福利')
sheet1.write(0, 11,'發布時間')
number = 1
item = input()
for j in range(1,10000):   #頁數自己隨便改
    try:
        print("正在爬取第"+str(j)+"頁數據...")
        html = getfront(j,item)      #調用獲取網頁原碼
        for i in getInformation(html):
            try:
                url1 = i[1]          #職位網址
                res1 = urllib.request.urlopen(url1).read().decode('gbk')
                company = re.findall(re.compile(r'<div class="com_tag">.*?<p class="at" title="(.*?)"><span class="i_flag">.*?<p class="at" title="(.*?)">.*?<p class="at" title="(.*?)">.*?',re.S),res1)
                job_need = re.findall(re.compile(r'<p class="msg ltype".*?>.*?&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;(.*?)&nbsp;&nbsp;<span>|</span>&nbsp;&nbsp;.*?</p>',re.S),res1)
                welfare = re.findall(re.compile(r'<span class="sp4">(.*?)</span>',re.S),res1)
                print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6])
                sheet1.write(number,0,number)
                sheet1.write(number,1,i[0])
                sheet1.write(number,2,i[2])
                sheet1.write(number,3,i[4])
                sheet1.write(number,4,company[0][0])
                sheet1.write(number,5,i[5])
                sheet1.write(number,6,job_need[1][0])
                sheet1.write(number,7,job_need[2][0])
                sheet1.write(number,8,company[0][1])
                sheet1.write(number,9,company[0][2])
                sheet1.write(number,10,("  ".join(str(i) for i in welfare)))
                sheet1.write(number,11,i[6])
                number+=1
                excel1.save("51job.xls")
                time.sleep(0.3) #休息間隔,避免爬取海量數據時被誤判為攻擊,IP遭到封禁
            except:
                pass
    except:
        pass
#coding:utf-8
import pandas as pd
import re
#除此之外還要安裝xlrd包
data = pd.read_excel(r'51job.xls',sheet_name='Job')
result = pd.DataFrame(data)
a = result.dropna(axis=0,how='any')
pd.set_option('display.max_rows',None)     #輸出全部行,不省略
b = u'數據'
number = 1
li = a['職位']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)
    except:
        pass
   
b2= u'人'
li2 = a['學歷要求']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            #print(number,li2[i])
            number+=1
            a = a.drop(i,axis=0)
    except:
        pass
b3 =u'萬/年'
b4 =u'千/月'
li3 = a['薪資']
#注釋部分的print都是為了調試用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,'.2f')              #轉換成浮點型並保留兩位小數
            max_ = format(float(x[1])/12,'.2f')
            li3[i][1] = min_+'-'+max_+u'萬/月'
        if b4 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,'.2f')
            max_ = format(float(x[1])/10,'.2f')
            li3[i][1] = str(min_+'-'+max_+'萬/月')
        print(i,li3[i])
    except:
        pass
#保存到另一個文件
a.to_excel('51job2.xls', sheet_name='Job', index=False)
file = pd.read_excel(r'51job2.xls',sheet_name='Job')
f = pd.DataFrame(file)
pd.set_option('display.max_rows',None)
add = f['公司地點']
sly = f['薪資']
edu = f['學歷要求']
exp = f['工作經驗']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split('-')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r'\d*\.?\d+',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass
  
min_s=[]       #定義存放最低薪資的列表
max_s=[]       #定義存放最高薪資的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])
my_df = pd.DataFrame({'experience':experience, 'min_salay' : min_s, 'max_salay' : max_s})    #關聯工作經驗與薪資
data1 = my_df.groupby('experience').mean()['min_salay'].plot(kind='line')
plt.show()
my_df2 = pd.DataFrame({'education':education, 'min_salay' : min_s, 'max_salay' : max_s})    #關聯學歷與薪資
data2 = my_df2.groupby('education').mean()['min_salay'].plot(kind='line')
plt.show()
   
def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)
attr= dir1.keys()
value = dir1.values()
pie = Pie("學歷要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype='radius',
        is_legend_show=False, is_label_show=True,legend_orient='vertical')
pie.render('學歷要求玫瑰圖.html')

  

 

總結:

1.經過對主題數據的分析與可視化,可以得到哪些結論?

數據可視化可以讓我們對網頁的內容更清晰,更直觀。

2.小結

經過這段時間的學習,我認識到學Python太難了,由於英語不扎實,經常要查找英語單詞,在find_all上徘徊了很久,運行不了,最后還是沒搞懂,今后需要更多時間投入。

 
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM