qq空間滑動驗證圖片:
本模塊專門用來處理滑動驗證碼的問題
from selenium.webdriver import ActionChains import random, time, os import cv2 from PIL import Image as Im import numpy as np import requests class SlideVerificationCode(): """滑動驗證碼破解""" def __init__(self, count=5, save_image=False): """ :param count: 驗證重試的次數,默認為5次 :param save_image: 是否保存驗證過程中的圖片,默認不保存 """ self.count = count self.save_image = save_image def slide_verification(self, driver, slide_element, distance): """ :param driver: driver對象 :type driver:webdriver.Chrome :param slide_element: 滑塊的元組 :type slider_ele: WebElement :param distance: 滑動的距離 :type: int :return: """ start_url = driver.current_url print("需要滑動的距離為:", distance) locus = self.get_slide_locus(distance) print("生成的滑動軌跡為:{},軌跡的距離之和為{}".format(locus, distance)) ActionChains(driver).click_and_hold(slide_element).perform() time.sleep(0.5) for loc in locus: time.sleep(0.01) ActionChains(driver).move_by_offset(loc, random.randint(-5, 5)).perform() ActionChains(driver).context_click(slide_element) ActionChains(driver).release(on_element=slide_element).perform() time.sleep(2) end_url = driver.current_url if start_url == end_url and self.count > 0: print("第{}次驗證失敗,開啟重試".format(6 - self.count)) self.count -= 1 self.slide_verification(driver, slide_element, distance) def onload_save_img(self, url, filename="image.png"): """ 下載圖片保存 :param url:圖片地址 :param filename: 保存的圖片名 :return: """ try: response = requests.get(url=url) except(requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError)as e: print("圖片下載失敗") raise e else: with open(filename, "wb") as f: f.write(response.content) def get_element_slide_distance(self, slider_ele, background_ele, correct=0): """ 根據傳入滑塊,和背景的節點,計算滑塊的距離 該方法只能計算 滑塊和背景圖都是一張完整圖片的場景, 如果是通過多張小圖拼接起來的背景圖,該方法不適用,后續會補充一個專門針對處理該場景的方法 :param slider_ele: 滑塊圖片的節點 :type slider_ele: WebElement :param background_ele: 背景圖的節點 :type background_ele:WebElement :param correct:滑塊缺口截圖的修正值,默認為0,調試截圖是否正確的情況下才會用 :type: int :return: 背景圖缺口位置的X軸坐標位置(缺口圖片左邊界位置) """ slider_url = slider_ele.get_attribute("src") background_url = background_ele.get_attribute("src") slider = "slider.jpg" background = "background.jpg" self.onload_save_img(slider_url, slider) self.onload_save_img(background_url, background) slider_pic = cv2.imread(slider, 0) background_pic = cv2.imread(background, 0) width, height = slider_pic.shape[::-1] slider01 = "slider01.jpg" background_01 = "background01.jpg" cv2.imwrite(background_01, background_pic) cv2.imwrite(slider01, slider_pic) slider_pic = cv2.imread(slider01) slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY) slider_pic = abs(255 - slider_pic) cv2.imwrite(slider01, slider_pic) slider_pic = cv2.imread(slider01) background_pic = cv2.imread(background_01) result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED) top, left = np.unravel_index(result.argmax(), result.shape) print("當前滑塊的缺口位置:", (left, top, left + width, top + height)) if self.save_image: loc = (left + correct, top + correct, left + width - correct, top + height - correct) self.image_crop(background, loc) else: os.remove(slider01) os.remove(background_01) os.remove(slider) os.remove(background) return left def get_image_slide_dictance(self, slider_image, background_image, correct=0): """ 根據傳入滑塊,和背景的圖片,計算滑塊的距離 該方法只能計算 滑塊和背景圖都是一張完整圖片的場景, 如果是通過多張小圖拼接起來的背景圖,該方法不適用,后續會補充一個專門針對處理該場景的方法 :param slider_iamge: 滑塊圖的圖片 :type slider_image: str :param background_image: 背景圖的圖片 :type background_image: str :param correct:滑塊缺口截圖的修正值,默認為0,調試截圖是否正確的情況下才會用 :type: int :return: 背景圖缺口位置的X軸坐標位置(缺口圖片左邊界位置) """ slider_pic = cv2.imread(slider_image, 0) background_pic = cv2.imread(background_image, 0) width, height = slider_pic.shape[::-1] slider01 = "slider01.jpg" background_01 = "background01.jpg" cv2.imwrite(background_01, background_pic) cv2.imwrite(slider01, slider_pic) slider_pic = cv2.imread(slider01) slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY) slider_pic = abs(255 - slider_pic) cv2.imwrite(slider01, slider_pic) slider_pic = cv2.imread(slider01) background_pic = cv2.imread(background_01) result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED) top, left = np.unravel_index(result.argmax(), result.shape) print("當前滑塊的缺口位置:", (left, top, left + width, top + height)) if self.save_image: loc = (left + correct, top + correct, left + width - correct, top + height - correct) self.image_crop(background_image, loc) else: os.remove(slider01) os.remove(background_01) return left @classmethod def get_slide_locus(self, distance): """ 根據移動坐標位置構造移動軌跡,前期移動慢,中期塊,后期慢 :param distance:移動距離 :type:int :return:移動軌跡 :rtype:list """ remaining_dist = distance locus = [] while remaining_dist > 0: ratio = remaining_dist / distance if ratio < 0.2: span = random.randint(2, 8) elif ratio > 0.8: span = random.randint(5, 8) else: span = random.randint(10, 16) locus.append(span) remaining_dist -= span return locus def image_crop(self, image, location, new_name="new_image.png"): """ 對圖片的指定位置進行截圖 :param image: 被截取圖片的坐標位置 :param location:需要截圖的坐標位置:(left,top,right,button) :type location: tuple :return: """ image = Im.open(image) imagecrop = image.crop(location) imagecrop.save(new_name)
qq空間登錄滑動圖片驗證
import time from selenium import webdriver from web_項目前期.AlideVerification.slideVerfication import SlideVerificationCode # 1、創建一個driver對象,訪問qq登錄頁面 browser = webdriver.Chrome() browser.get("https://qzone.qq.com/") # 2、輸入賬號密碼 # 2.0 點擊切換到登錄的iframe browser.switch_to.frame('login_frame') # 2.1 點擊賬號密碼登錄 browser.find_element_by_id('switcher_plogin').click() # 2.2定位賬號輸入框,輸入賬號 browser.find_element_by_id("u").send_keys("1938091409") # 2.3定位密碼輸入輸入密碼 browser.find_element_by_id("p").send_keys("aini2141339856.0") # 3、點擊登錄 browser.find_element_by_id('login_button').click() time.sleep(3) # 4、模擬滑動驗證 # 4.1切換到滑動驗證碼的iframe中 tcaptcha = browser.find_element_by_id("tcaptcha_iframe") browser.switch_to.frame(tcaptcha) # 4.2選擇拖動滑塊的節點 slide_element = browser.find_element_by_id('tcaptcha_drag_thumb') # 模擬拖到滑塊進行識別 sc = SlideVerificationCode(save_image=True) # 獲取滑塊圖片的節點id="slideBlock" slideBlock_ele = browser.find_element_by_id('slideBlock') # 獲取背景圖片節點id="slideBg" slideBg = browser.find_element_by_id('slideBg') # 4.3計算滑動距離,電腦縮放比例需要為100% 才可確保減去的正確 distance = sc.get_element_slide_distance(slideBlock_ele, slideBg) print("滑動的距離為:", distance) # 滑動距離誤差校正,按照比例來進行計算,然后減去 第一部分距離 distance = distance*(280 / 680) - 31 print("校驗后的滑動距離", distance) # 4.4、進行滑動 sc.slide_verification(browser, slide_element, distance=distance) time.sleep(2) browser.close()
*******請大家尊重原創,如要轉載,請注明出處:轉載自:https://www.cnblogs.com/shouhu/,謝謝!!*******