數據增強采用隨機高斯噪聲,JPRG壓縮,隨機翻轉,使數據集一變多
拼接
MS COCO是用於目標檢測,語義分割的數據集。包括82783訓練圖像,40504測試圖像
CASIA v2.0:包含7,491個真實圖像和5,123個偽造(拼接和復制移動)彩色圖像,尺寸范圍為240 × 160至900 × 600 JPEG和TIFF格式
CASIA:包含TIFF格式的圖像1275對(篡改圖像1275個,原始圖像1275個),其中大部分像素分辨率約為384×256 。拼接的偽造區域是小而精細的對象
Columbia gray DVMM:由933個真實圖像和912個BMP格式的拼接圖像組成,大小均為128 × 128像素,沒有任何后處理.
DSO-1:由100個具有像素方向真實情況的拼接圖像和100個原始圖像組成,分辨率為2,048 × 1,536像素
COLUMB:包含179對TIFF格式圖像,大小757×568。拼接偽造區域是簡單、大、無意義的區域
FORENSICS:由高分辨率圖像(2018×1536)組成,包含144對PNG格式的圖像。拼接的偽造區域是小而精細的對象,但是這些區域更真實,更接近背景。
PS-Battles:
The Reddit dataset:本文收集9947個可用的圖像對。(Image provenance analysis at scale 的作者從在線社區收集了reddit 數據集)
MFC2018:
carvalho[]:94幅圖像
Realistic Tampering[]:220圖像,拼接后還有后處理操作。這個數據集中也有復制粘貼圖像
參考:
CASIA v2.0:J. Dong and W. Wang. (2011). CASIA Tampered Image Detection Evalua-tion (TIDE) Database, v1.0 and v2.0. [Online]. Available: http://forensics.idealtest.org/
Columbia gray DVMM:T.-T. Ng, J. Hsu, and S.-F. Chang. Columbia Image Splicing Detection Evaluation Dataset. Accessed: Sep. 19, 2019. [Online]. Available:http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
DSO-1:T. J. de Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, and A. Rocha,
``Exposing digital image forgeries by illumination color classification,''
IEEE Trans. Inf. Forensics Security, vol. 8, no. 7, pp. 1182-1194, Jul. 2013.
COLUMB:Y.-F. Hsu , S.-F. Chang , Detecting image splicing using geometry invariants and camera characteristics consistency, in: Proceedings of the IEEE Interna- tional Conference on Multimedia and Expo, IEEE, 2006, pp. 549–552 .
FORENSICS: https://signalprocessingsociety.org/newsletter/2014/01/ieee- ifs- tc- image- forensics- challenge- website- new- submissions (2014)
復制粘貼
CMH:由四個CMH子數據集組成,共有108張復制-移動篡改圖像。篡改圖像包含了旋轉和縮放變換的攻擊
MICC-F200:有110個基礎和110個篡改圖像。圖像的大小范圍從722×480至800×600。然而,該數據集不提供篡改圖像的 ground truth
MICC-F600:由160幅篡改圖像和440幅原始圖像組成,圖像分辨率從800×533到3888×2592不等
MICC-2000:有1300個基礎和700張篡改圖像,尺寸為2048×1536。然而,該數據集也不提供篡改圖像的 ground truth
GRIP:有80個基本圖像和80個相應的篡改圖像。大小相同都是 768×1024。數據集提供了相應的ground truth。大部分復制的片段很光滑。
Coverage:數據集有100個基本圖像和相應的篡改圖像,平均尺寸為400×486
SUN:數據集有397個類別和108,754個基本圖像。相應的注釋圖像可以方便地生成篡改圖像和 ground truth
FAU:數據集有48張高分辨率的基礎圖像和48張對應的具有真實復制-移動操作的篡改圖像,平均大小為3000×2300
CASIA:數據集有1309個復制-移動偽造圖像,其中包含了旋轉、縮放變換的攻擊。
CoMoFoD:數據集有200個基本圖像,平均大小為512×512
MFC2018: Media forensicschallenge 2018 包含1327正樣本對和16673負樣本對
PS-Battles:共102028圖像,11142個子類。(The ps-battles dataset - an image collection for image manipulation detection的作者收集而來)
參考
FAU: V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An evaluation of popular copy-move forgery detection approaches,” IEEE Trans. on Inf. Forensics and Security, vol. 7, no. 6, pp. 1841–1854, 2012
GRIP: D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copymove forgery detection,” IEEE Trans. on Inf. Forensics and Security, vol. 10, no. 11, pp. 2284–2297, 2015
MICC-F200: I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “A SIFT-based forensic method for copy–move attack detection and transformation recovery,” IEEE Trans. on Inf. Forensics and Security, vol. 6, no. 3, pp. 1099–1110, 2011
MICC-600: I. Amerini, L. Ballan, R. Caldelli, A. D. Bimbo, L. D. Tongo, and G. Serra, “Copy-move forgery detection and localization by means of robust clustering with j-linkage,” Signal Process.: Image Commun., vol. 28, no. 6, pp. 659 – 669, 2013
CMH:E. Silva, T. Carvalho, A. Ferreira, and A. Rocha, “Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes,” J. Vis. Commun. and Image Represent., vol. 29, pp. 16 – 32, 2015
COVERAGE:B. Wen, Y. Zhu, R. Subramanian, T. Ng, X. Shen, and S. Winkler, “COVERAGE - a novel database for copy-move forgery detection,” in Proc. IEEE Int. Conf. Image Process., 2016, pp. 161–165.
SUN:J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN database: Large-scale scene recognition from abbey to zoo,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 3485–3492
CoMoFoD:D. Tralic, I. Zupancic, S. Grgic, and M. Grgic, “CoMoFoD—New database for copy-move forgery detection,” in Proc. ELMAR, Sep. 2013, pp. 49–54.