下面的范例使用TensorFlow的中階API實現線性回歸模型。
TensorFlow的中階API主要包括各種模型層,損失函數,優化器,數據管道,特征列等等。
import tensorflow as tf from tensorflow.keras import layers,losses,metrics,optimizers # 打印時間分割線 @tf.function def printbar(): ts = tf.timestamp() today_ts = ts%(24*60*60) hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24) minite = tf.cast((today_ts%3600)//60,tf.int32) second = tf.cast(tf.floor(today_ts%60),tf.int32) def timeformat(m): if tf.strings.length(tf.strings.format("{}",m))==1: return(tf.strings.format("0{}",m)) else: return(tf.strings.format("{}",m)) timestring = tf.strings.join([timeformat(hour),timeformat(minite), timeformat(second)],separator = ":") tf.print("=========="*8,end = "") tf.print(timestring) # 樣本數量 n = 800 # 生成測試用數據集 X = tf.random.uniform([n,2],minval=-10,maxval=10) w0 = tf.constant([[2.0],[-1.0]]) b0 = tf.constant(3.0) Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) # @表示矩陣乘法,增加正態擾動 # 構建輸入數據管道 ds = tf.data.Dataset.from_tensor_slices((X,Y)) \ .shuffle(buffer_size = 1000).batch(100) \ .prefetch(tf.data.experimental.AUTOTUNE) # 定義優化器 optimizer = optimizers.SGD(learning_rate=0.001) linear = layers.Dense(units = 1) linear.build(input_shape = (2,)) @tf.function def train(epoches): for epoch in tf.range(1,epoches+1): L = tf.constant(0.0) #使用L記錄loss值 for X_batch,Y_batch in ds: with tf.GradientTape() as tape: Y_hat = linear(X_batch) loss = losses.mean_squared_error(tf.reshape(Y_hat,[-1]),tf.reshape(Y_batch,[-1])) grads = tape.gradient(loss,linear.variables) optimizer.apply_gradients(zip(grads,linear.variables)) L = loss if(epoch%100==0): printbar() tf.print("epoch =",epoch,"loss =",L) tf.print("w =",linear.kernel) tf.print("b =",linear.bias) tf.print("") train(500)
結果:
InternalError: 2 root error(s) found. (0) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: tensorflow::data::(anonymous namespace)::DatasetVariantWrapper [[{{node while_input_5/_12}}]] [[Func/while/body/_1/cond/then/_78/StatefulPartitionedCall/cond/then/_105/input/_133/_96]] (1) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: tensorflow::data::(anonymous namespace)::DatasetVariantWrapper [[{{node while_input_5/_12}}]] 0 successful operations. 0 derived errors ignored. [Op:__inference_train_302016] Function call stack: train -> train
這里出現了一個問題,我是在谷歌colab上使用gpu進行運行的,會報這個錯誤,但當我切換成cpu運行時就不報錯了:
================================================================================15:34:47 epoch = 100 loss = 4.7718153 w = [[2.00853848] [-1.00294471]] b = [2.51343322] ================================================================================15:34:49 epoch = 200 loss = 3.71054626 w = [[2.01135874] [-1.00254476]] b = [3.019526] ================================================================================15:34:51 epoch = 300 loss = 3.84821081 w = [[2.01109028] [-1.00210166]] b = [3.12148571] ================================================================================15:34:53 epoch = 400 loss = 3.35442448 w = [[2.01156759] [-1.0024389]] b = [3.14201045] ================================================================================15:34:55 epoch = 500 loss = 3.98874116 w = [[2.00852275] [-1.00062764]] b = [3.14614844]
參考:
開源電子書地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/
GitHub 項目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days