Kafka-序列化器
自定義序列化器
不建議使用自定義序列化器,因為如果序列化器需要新增字段,則會出現新舊消息不兼容問題。推薦使用已知的序列化器和反序列化器,如JSON、Avro、Thrift或Protobuf.
/** * @Author FengZhen * @Date 2020-03-30 22:49 * @Description 自定義序列化器的實體類 */ public class Customer { private int customerID; private String customerName; public Customer(int customerID, String customerName) { this.customerID = customerID; this.customerName = customerName; } public int getCustomerID() { return customerID; } public void setCustomerID(int customerID) { this.customerID = customerID; } public String getCustomerName() { return customerName; } public void setCustomerName(String customerName) { this.customerName = customerName; } }
import org.apache.kafka.common.errors.SerializationException; import org.apache.kafka.common.serialization.Serializer; import java.nio.ByteBuffer; import java.util.Map; /** * @Author FengZhen * @Date 2020-03-30 22:49 * @Description 自定義序列化器:不建議使用,因為如果修改序列化器,就會出現新舊消息不兼容。 * 建議使用已有的序列化器和反序列化器,如JSON、Avro、Thrift或Protobuf */ public class CustomerSerializer implements Serializer<Customer> { @Override public void configure(Map<String, ?> configs, boolean isKey) { //不做任何配置 } /** * Customer對象被序列化成: * 表示customerID的4字節整數 * 表示customerName長度的4字節整數(如果customerName為空,則長度為0) * 表示customerName的N個字節 * @param topic * @param data * @return */ @Override public byte[] serialize(String topic, Customer data) { try { byte[] serializedName; int stringSize; if (null == data){ return null; }else{ if (data.getCustomerName() != ""){ serializedName = data.getCustomerName().getBytes("UTF-8"); stringSize = serializedName.length; }else{ serializedName = new byte[0]; stringSize = 0; } } ByteBuffer buffer = ByteBuffer.allocate(4 + 4 + stringSize); buffer.putInt(data.getCustomerID()); buffer.putInt(stringSize); buffer.put(serializedName); return buffer.array(); } catch (Exception e){ throw new SerializationException("Error when serializing Customer to byte[] " + e); } } @Override public void close() { //不需要關閉任何東西 } }
使用Avro序列化
Avro的數據文件里包含了整個schema,不過這樣的開銷是可接受的。但是如果在每條kafka記錄里都嵌入schema,會讓記錄的大小成倍的增加。在讀取記錄時仍然需要用到整個schema。使用schema注冊表實現。
schema注冊表並不屬於kafka,現在有一些開源的schema注冊表實現,如Confluent Schema Registry。
我們把所有寫入數據需要用到的schema保存在注冊表里,然后在記錄里引用schema的標識符。負責讀取數據的應用程序使用標識符從注冊表里拉取schema來反序列化記錄。序列化器和反序列化器分別負責處理schema的注冊和拉取。
import org.apache.avro.Schema; import org.apache.avro.generic.GenericData; import org.apache.avro.generic.GenericRecord; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; /** * @Author FengZhen * @Date 2020-03-30 23:06 * @Description Avro序列化器 * */ public class AvroSerializerTest { public static void main(String[] args) { } /** * 一般的Avro對象 * { * " namespace": " customerManagement . avro", * "type": "record", * "name": "Customer", * "fields": [{ * "name": "id", * "type": "int" * }, * { * "name": "name", * "type": "string" * }, * { * "name": "email", * "type": ["null", "string"], * "default": "null" * } * ] * } */ public static void genericValue(){ String schemaUrl = ""; Properties properties = new Properties(); properties.put("bootstrap.servers", "localhost:9092"); properties.put("key.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer"); properties.put("value.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer"); //schema注冊表URI properties.put("schema.registry.url", schemaUrl); String schemaString = "{\n" + "\t\" namespace\": \" customerManagement . avro\",\n" + "\t\"type\": \"record\",\n" + "\t\"name\": \"Customer\",\n" + "\t\"fields\": [{\n" + "\t\t\t\"name\": \"id\",\n" + "\t\t\t\"type\": \"int\"\n" + "\t\t},\n" + "\t\t{\n" + "\t\t\t\"name\": \"name\",\n" + "\t\t\t\"type\": \"string\"\n" + "\t\t},\n" + "\t\t{\n" + "\t\t\t\"name\": \"email\",\n" + "\t\t\t\"type\": [\"null\", \"string\"],\n" + "\t\t\t\"default\": \"null\"\n" + "\t\t}\n" + "\t]\n" + "}"; String topic = "customerContacts"; Producer<String, GenericRecord> producer = new KafkaProducer<String, GenericRecord>(properties); Schema.Parser parser = new Schema.Parser(); Schema schema = parser.parse(schemaString); int i = 0; while (true){ i++; String name = "example:" + i; String email = "email:" + i; GenericRecord genericRecord = new GenericData.Record(schema); genericRecord.put("id", i); genericRecord.put("name", name); genericRecord.put("email", email); ProducerRecord<String, GenericRecord> record = new ProducerRecord<String, GenericRecord>(topic, name, genericRecord); producer.send(record); } } /** * 用戶自定義的Avro對象 */ public static void udfValue(){ String schemaUrl = ""; Properties properties = new Properties(); properties.put("bootstrap.servers", "localhost:9092"); properties.put("key.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer"); properties.put("value.serializer", "io.confluent.kafka.serializer.KafkaAvroSerializer"); //schema注冊表URI properties.put("schema.registry.url", schemaUrl); String topic = "customerContacts"; Producer<String, Customer> producer = new KafkaProducer<String, Customer>(properties); int i = 0; while (true){ Customer customer = new Customer(++i, "name:" + i); ProducerRecord<String, Customer> record = new ProducerRecord<String, Customer>(topic, String.valueOf(customer.getCustomerID()), customer); producer.send(record); } } }