python調用tensorflow.keras搭建長短記憶型網絡(LSTM)——以預測股票收盤價為例


程序簡介

程序調用tensorflow.keras搭建了一個簡單長短記憶型網絡(LSTM),以上證指數為例,對數據進行標准化處理,輸入5天的'收盤價', '最高價', '最低價','開盤價',輸出1天的'收盤價',利用訓練集訓練網絡后,輸出測試集的MAE

長短記憶型網絡(LSTM):是一種改進之后的循環神經網絡,可以解決RNN無法處理長距離的依賴的問題。

程序/數據集下載

點擊進入下載地址

代碼分析

導入模塊、路徑

# -*- coding: utf-8 -*-
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.layers import Input,Dense,LSTM,GRU,BatchNormalization
from tensorflow.keras.layers import PReLU
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import mean_absolute_error as MAE
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import pandas as pd
import numpy as np
import os

#用來正常顯示中文標簽
plt.rcParams['font.sans-serif']=['SimHei'] 
#用來正常顯示負號
plt.rcParams['axes.unicode_minus']=False
#路徑目錄
baseDir = ''#當前目錄
staticDir = os.path.join(baseDir,'Static')#靜態文件目錄
resultDir = os.path.join(baseDir,'Result')#結果文件目錄

讀取數據,查看5行

#讀取數據
data = pd.read_csv(staticDir+'/000001.csv',encoding='gbk').iloc[-100:,:]
data = data.set_index(['日期'])
data.head()
股票代碼 名稱 收盤價 最高價 最低價 開盤價 前收盤 漲跌額 漲跌幅 成交量 成交金額
日期
2019/9/16 '000001 上證指數 3030.7544 3042.9284 3020.0495 3041.9220 3031.2351 -0.4807 -0.0159 221878959 2.37E+11
2019/9/17 '000001 上證指數 2978.1178 3023.7109 2970.5704 3023.7109 3030.7544 -52.6366 -1.7367 223338061 2.38E+11
2019/9/18 '000001 上證指數 2985.6586 2996.4022 2982.4003 2984.0837 2978.1178 7.5408 0.2532 168046699 2.00E+11
2019/9/19 '000001 上證指數 2999.2789 2999.2789 2975.3978 2992.9222 2985.6586 13.6203 0.4562 162690615 1.93E+11
2019/9/20 '000001 上證指數 3006.4467 3011.3400 2996.1929 3004.8142 2999.2789 7.1678 0.239 182145302 2.18E+11

對輸入輸出進行標准化,查看5行

#標准化數據集
outputCol = ['收盤價']#輸出列
inputCol = ['收盤價', '最高價','最低價','開盤價']#輸入列
X = data[inputCol]
Y = data[outputCol]
xScaler = StandardScaler()
yScaler = StandardScaler()
X = xScaler.fit_transform(X)
Y = yScaler.fit_transform(Y)
X[:5,:]
array([[0.94704786, 0.91606531, 0.98497021, 1.04253169],
       [0.21175964, 0.65151178, 0.33108448, 0.80913257],
       [0.31709816, 0.2755725 , 0.48742125, 0.30125807],
       [0.50736208, 0.31517397, 0.39488046, 0.41453503],
       [0.60749011, 0.48121048, 0.66969587, 0.5669466 ]])

將數據按時間步進行整理,時間步這里設置為5天,輸入為1天

#按時間步組成輸入輸出集
timeStep = 5#輸入天數
outStep = 1#輸出天數
xAll = list()
yAll = list()
#按時間步整理數據 輸入數據尺寸是(timeStep,5) 輸出尺寸是(outSize)
for row in range(data.shape[0]-timeStep-outStep+1):
    x = X[row:row+timeStep]
    y = Y[row+timeStep:row+timeStep+outStep]
    xAll.append(x)
    yAll.append(y)
xAll = np.array(xAll).reshape(-1,timeStep,len(inputCol))
yAll = np.array(yAll).reshape(-1,outStep)
print('輸入集尺寸',xAll.shape)
print('輸出集尺寸',yAll.shape)
輸入集尺寸 (95, 5, 4)
輸出集尺寸 (95, 1)

數據集分割為訓練集和測試集

#分成測試集,訓練集
testRate = 0.2#測試比例
splitIndex = int(xAll.shape[0]*(1-testRate))
xTrain = xAll[:splitIndex]
xTest = xAll[splitIndex:]
yTrain = yAll[:splitIndex]
yTest = yAll[splitIndex:]

搭建一個簡單的LSTM網絡,結構下文會打印出來

def buildLSTM(timeStep,inputColNum,outStep,learnRate=1e-4):
    '''
    搭建LSTM網絡,激活函數為tanh
    timeStep:輸入時間步
    inputColNum:輸入列數
    outStep:輸出時間步
    learnRate:學習率    
    '''
    #輸入層
    inputLayer = Input(shape=(timeStep,inputColNum))

    #中間層
    middle = LSTM(100,activation='tanh')(inputLayer)
    middle = Dense(100,activation='tanh')(middle)

    #輸出層 全連接
    outputLayer = Dense(outStep)(middle)
    
    #建模
    model = Model(inputs=inputLayer,outputs=outputLayer)
    optimizer = Adam(lr=learnRate)
    model.compile(optimizer=optimizer,loss='mse') 
    model.summary()
    return model

#搭建LSTM
lstm = buildLSTM(timeStep=timeStep,inputColNum=len(inputCol),outStep=outStep,learnRate=1e-4)
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 5, 4)              0         
_________________________________________________________________
lstm (LSTM)                  (None, 100)               42000     
_________________________________________________________________
dense (Dense)                (None, 100)               10100     
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 101       
=================================================================
Total params: 52,201
Trainable params: 52,201
Non-trainable params: 0
_________________________________________________________________

利用訓練集對網絡進行訓練

#訓練網絡
epochs = 1000#迭代次數
batchSize = 500#批處理量
lstm.fit(xTrain,yTrain,epochs=epochs,verbose=0,batch_size=batchSize) 

對測試集進行預測,保存預測結果,查看5行

#預測 測試集對比
yPredict = lstm.predict(xTest)
yPredict = yScaler.inverse_transform(yPredict)[:,0]
yTest = yScaler.inverse_transform(yTest)[:,0]
result = {'觀測值':yTest,'預測值':yPredict}
result = pd.DataFrame(result)
result.index = data.index[timeStep+xTrain.shape[0]:result.shape[0]+timeStep+xTrain.shape[0]]
result.to_excel(resultDir+'/預測結果.xlsx')
result.head()
觀測值 預測值
日期
2020/1/15 3090.0379 3119.753662
2020/1/16 3074.0814 3103.595947
2020/1/17 3075.4955 3085.278809
2020/1/20 3095.7873 3079.762451
2020/1/21 3052.1419 3094.907471

計算測試集MAE,進行可視化

mae = MAE(result['觀測值'],result['預測值'])
print('模型測試集MAE',mae)
#可視化
fig,ax = plt.subplots(1,1)
ax.plot(result.index,result['預測值'],label='預測值')
ax.plot(result.index,result['觀測值'],label='觀測值')
ax.set_title('LSTM預測效果,MAE:%2f'%mae)
ax.legend()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
fig.savefig(resultDir+'/預測折線圖.png',dpi=500)
模型測試集MAE 37.06394592927633


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM