【colab pytorch】訓練和測試常用模板代碼


目錄:

  1. 分類模型訓練代碼
  2. 分類模型測試代碼
  3. 自定義損失函數
  4. 標簽平滑
  5. mixup訓練
  6. L1正則化
  7. 不對偏置項進行權重衰減
  8. 梯度裁剪
  9. 得到當前學習率
  10. 學習率衰減
  11. 優化器鏈式更新
  12. 模型訓練可視化
  13. 保存和加載斷點
  14. 提取Imagenet預訓練模型的某層特征
  15. 提取imagenet預訓練模型的多層特征
  16. 微調全連接層
  17. 以較大學習率微調全連接層,較小學習率微調卷積層

1、分類模型訓練代碼

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i ,(images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimizer
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {}'
                  .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

2、分類模型測試代碼

# Test the model
model.eval()  # eval mode(batch norm uses moving mean/variance 
              #instead of mini-batch mean/variance)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test accuracy of the model on the 10000 test images: {} %'
          .format(100 * correct / total))

3、自定義損失函數

繼承torch.nn.Module類寫自己的loss。

class MyLoss(torch.nn.Module):
    def __init__(self):
        super(MyLoss, self).__init__()

    def forward(self, x, y):
        loss = torch.mean((x - y) ** 2)
        return loss

4、標簽平滑

寫一個label_smoothing.py的文件,然后在訓練代碼里引用,用LSR代替交叉熵損失即可。label_smoothing.py內容如下:

import torch
import torch.nn as nn

class LSR(nn.Module):

    def __init__(self, e=0.1, reduction='mean'):
        super().__init__()

        self.log_softmax = nn.LogSoftmax(dim=1)
        self.e = e
        self.reduction = reduction

    def _one_hot(self, labels, classes, value=1):
        """
            Convert labels to one hot vectors

        Args:
            labels: torch tensor in format [label1, label2, label3, ...]
            classes: int, number of classes
            value: label value in one hot vector, default to 1

        Returns:
            return one hot format labels in shape [batchsize, classes]
        """

        one_hot = torch.zeros(labels.size(0), classes)

        #labels and value_added  size must match
        labels = labels.view(labels.size(0), -1)
        value_added = torch.Tensor(labels.size(0), 1).fill_(value)

        value_added = value_added.to(labels.device)
        one_hot = one_hot.to(labels.device)

        one_hot.scatter_add_(1, labels, value_added)

        return one_hot

    def _smooth_label(self, target, length, smooth_factor):
        """convert targets to one-hot format, and smooth
        them.
        Args:
            target: target in form with [label1, label2, label_batchsize]
            length: length of one-hot format(number of classes)
            smooth_factor: smooth factor for label smooth

        Returns:
            smoothed labels in one hot format
        """
        one_hot = self._one_hot(target, length, value=1 - smooth_factor)
        one_hot += smooth_factor / (length - 1)

        return one_hot.to(target.device)

    def forward(self, x, target):

        if x.size(0) != target.size(0):
            raise ValueError('Expected input batchsize ({}) to match target batch_size({})'
                    .format(x.size(0), target.size(0)))

        if x.dim() < 2:
            raise ValueError('Expected input tensor to have least 2 dimensions(got {})'
                    .format(x.size(0)))

        if x.dim() != 2:
            raise ValueError('Only 2 dimension tensor are implemented, (got {})'
                    .format(x.size()))

        smoothed_target = self._smooth_label(target, x.size(1), self.e)
        x = self.log_softmax(x)
        loss = torch.sum(- x * smoothed_target, dim=1)

        if self.reduction == 'none':
            return loss

        elif self.reduction == 'sum':
            return torch.sum(loss)

        elif self.reduction == 'mean':
            return torch.mean(loss)

        else:
            raise ValueError('unrecognized option, expect reduction to be one of none, mean, sum')

或者直接在訓練文件里做label smoothing

for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()
    N = labels.size(0)
    # C is the number of classes.
    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)

    score = model(images)
    log_prob = torch.nn.functional.log_softmax(score, dim=1)
    loss = -torch.sum(log_prob * smoothed_labels) / N
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

5、mixup訓練

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()

    # Mixup images and labels.
    lambda_ = beta_distribution.sample([]).item()
    index = torch.randperm(images.size(0)).cuda()
    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
    label_a, label_b = labels, labels[index]

    # Mixup loss.
    scores = model(mixed_images)
    loss = (lambda_ * loss_function(scores, label_a)
            + (1 - lambda_) * loss_function(scores, label_b))
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

6、L1正則化

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ...  # Standard cross-entropy loss
for param in model.parameters():
    loss += torch.sum(torch.abs(param))
loss.backward()

7、不對偏置進行權重衰減

pytorch里的weight decay相當於l2正則

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},                
              {'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

8、梯度裁剪

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

9、得到當前學習率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']

# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
    all_lr.append(param_group['lr'])

另一種方法,在一個batch訓練代碼里,當前的lr是optimizer.param_groups[0]['lr']

10、學習率衰減

# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
    train(...)
    val(...)
    scheduler.step(val_acc)

# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
    scheduler.step()    
    train(...)
    val(...)

# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
    scheduler.step()
    train(...)
    val(...)

11、優化器鏈式更新

從1.4版本開始,torch.optim.lr_scheduler 支持鏈式更新(chaining),即用戶可以定義兩個 schedulers,並交替在訓練中使用。

import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR, StepLR
model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler1 = ExponentialLR(optimizer, gamma=0.9)
scheduler2 = StepLR(optimizer, step_size=3, gamma=0.1)
for epoch in range(4):
    print(epoch, scheduler2.get_last_lr()[0])
    optimizer.step()
    scheduler1.step()
    scheduler2.step()

12、模型訓練可視化

pip install tensorboard

tensorboard --logdir=runs

使用SummaryWriter類來收集和可視化相應的數據,放了方便查看,可以使用不同的文件夾,比如'Loss/train'和'Loss/test'。

from torch.utils.tensorboard import SummaryWriter
import numpy as np

writer = SummaryWriter()

for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

13、保存和加載斷點

tart_epoch = 0
# Load checkpoint.
if resume: # resume為參數,第一次訓練時設為0,中斷再訓練時設為1
    model_path = os.path.join('model', 'best_checkpoint.pth.tar')
    assert os.path.isfile(model_path)
    checkpoint = torch.load(model_path)
    best_acc = checkpoint['best_acc']
    start_epoch = checkpoint['epoch']
    model.load_state_dict(checkpoint['model'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    print('Load checkpoint at epoch {}.'.format(start_epoch))
    print('Best accuracy so far {}.'.format(best_acc))

# Train the model
for epoch in range(start_epoch, num_epochs): 
    ... 

    # Test the model
    ...

    # save checkpoint
    is_best = current_acc > best_acc
    best_acc = max(current_acc, best_acc)
    checkpoint = {
        'best_acc': best_acc,
        'epoch': epoch + 1,
        'model': model.state_dict(),
        'optimizer': optimizer.state_dict(),
    }
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    best_model_path = os.path.join('model', 'best_checkpoint.pth.tar')
    torch.save(checkpoint, model_path)
    if is_best:
        shutil.copy(model_path, best_model_path)

14、提取Imagenet預訓練模型某層的特征

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
    list(model.named_children())[:-1]))

with torch.no_grad():
    model.eval()
    conv_representation = model(image)

15、提取imagenet預訓練模型多層卷積特征

class FeatureExtractor(torch.nn.Module):
    """Helper class to extract several convolution features from the given
    pre-trained model.

    Attributes:
        _model, torch.nn.Module.
        _layers_to_extract, list<str> or set<str>

    Example:
        >>> model = torchvision.models.resnet152(pretrained=True)
        >>> model = torch.nn.Sequential(collections.OrderedDict(
                list(model.named_children())[:-1]))
        >>> conv_representation = FeatureExtractor(
                pretrained_model=model,
                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
    """
    def __init__(self, pretrained_model, layers_to_extract):
        torch.nn.Module.__init__(self)
        self._model = pretrained_model
        self._model.eval()
        self._layers_to_extract = set(layers_to_extract)

    def forward(self, x):
        with torch.no_grad():
            conv_representation = []
            for name, layer in self._model.named_children():
                x = layer(x)
                if name in self._layers_to_extract:
                    conv_representation.append(x)
            return conv_representation

16、微調全連接層

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
model.fc = nn.Linear(512, 100)  # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4

17、以較大學習率微調全連接層,較小學習率微調卷積層

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
              {'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

 

摘自:http://bbs.cvmart.net/topics/1472?from=timeline


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM