1. 繪制條形圖
import numpy as np from scipy import stats import matplotlib.pyplot as plt from sklearn.datasets import load_iris iris_data = load_iris() sample_1 = iris_data.data[0,:] # 取出第1行的所有數據 print(sample_1) # 繪制條開圖 p1 = plt.bar(range(1, len(sample_1) + 1), height = sample_1, tick_label = iris_data.feature_names, width = 0.3) plt.ylabel('cm') plt.title('plt of_first data') plt.show()
輸出圖形如下:
2. 餅圖
import matplotlib.pyplot as plt labels = 'Sunny', 'Windy', 'Frogy', 'Snowy' # 定義4種天氣 sizes = [15, 30, 45, 10] # 定義4種天氣所占的比例(%) explode = (0, 0.1, 0, 0) # 餅圖彈出第2個天氣 fig1, ax1 = plt.subplots() ax1.pie(sizes, explode = explode, labels = labels, autopct = '%1.1f%%', shadow = True, startangle = 90) ax1.axis('equal') plt.show()
3. 折線圖
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1)
y = np.sin(x)
plt.plot(x, y)
plt.show()
4. 直方圖
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
iris_data = load_iris()
feature_2 = iris_data.data[:,1]
plt.hist(feature_2, bins = 10)
plt.show()
5. 散點圖
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
iris_data = load_iris()
feature_1 = iris_data.data[:,0]
feature_3 = iris_data.data[:,2]
plt.scatter(feature_1, feature_3)
plt.show()