緩存異常幾種情況及其對應的解決方案


緩存雪崩

緩存同一時間大面積的失效,所以,后面的請求都會落到數據庫上,造成數據庫短時間內承受大量請求而崩掉。

解決方案:

  • 緩存數據的過期時間設置隨機,防止同一時間大量數據過期現象發生。
  • 一般並發量不是特別多的時候,使用最多的解決方案是加鎖排隊。
  • 給每一個緩存數據增加相應的緩存標記,記錄緩存的是否失效,如果緩存標記失效,則更新數據緩存。

緩存穿透

緩存和數據庫中都沒有的數據,導致所有的請求都落到數據庫上,造成數據庫短時間內承受大量請求而崩掉。

解決方案:

  • 接口層增加校驗,如用戶鑒權校驗,id做基礎校驗,id<=0的直接攔截。
  • 從緩存取不到的數據,在數據庫中也沒有取到,這時也可以將key-value對寫為key-null,緩存有效時間可以設置短點,如30秒(設置太長會導致正常情況也沒法使用)。這樣可以防止攻擊用戶反復用同一個id暴力攻擊。
  • 采用布隆過濾器,將所有可能存在的數據哈希到一個足夠大的 bitmap 中,一個一定不存在的數據會被這個 bitmap 攔截掉,從而避免了對底層存儲系統的查詢壓力。

附加:

對於空間的利用到達了一種極致,那就是Bitmap和布隆過濾器(Bloom Filter)。
Bitmap: 典型的就是哈希表
缺點是,Bitmap對於每個元素只能記錄1bit信息,如果還想完成額外的功能,恐怕只能靠犧牲更多的空間、時間來完成了。

布隆過濾器(推薦)

就是引入了k(k>1)k(k>1)個相互獨立的哈希函數,保證在給定的空間、誤判率下,完成元素判重的過程。
它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率和刪除困難。
Bloom-Filter算法的核心思想就是利用多個不同的Hash函數來解決“沖突”。
Hash存在一個沖突(碰撞)的問題,用同一個Hash得到的兩個URL的值有可能相同。為了減少沖突,我們可以多引入幾個Hash,如果通過其中的一個Hash值我們得出某元素不在集合中,那么該元素肯定不在集合中。只有在所有的Hash函數告訴我們該元素在集合中時,才能確定該元素存在於集合中。這便是Bloom-Filter的基本思想。
Bloom-Filter一般用於在大數據量的集合中判定某元素是否存在。

緩存擊穿

緩存中沒有但數據庫中有的數據(一般是緩存時間到期),這時由於並發用戶特別多,同時讀緩存沒讀到數據,又同時去數據庫去取數據,引起數據庫壓力瞬間增大,造成過大壓力。和緩存雪崩不同的是,緩存擊穿指並發查同一條數據,緩存雪崩是不同數據都過期了,很多數據都查不到從而查數據庫。

解決方案

  • 設置熱點數據永遠不過期。
  • 加互斥鎖,互斥鎖

緩存預熱

系統上線后,將相關的緩存數據直接加載到緩存系統。這樣就可以避免在用戶請求的時候,先查詢數據庫,然后再將數據緩存的問題!用戶直接查詢事先被預熱的緩存數據!

解決方案

  • 直接寫個緩存刷新頁面,上線時手工操作一下;
  • 數據量不大,可以在項目啟動的時候自動進行加載;
  • 定時刷新緩存。

緩存降級

當訪問量劇增、服務出現問題(如響應時間慢或不響應)或非核心服務影響到核心流程的性能時,仍然需要保證服務還是可用的,即使是有損服務。系統可以根據一些關鍵數據進行自動降級,也可以配置開關實現人工降級。

緩存降級的最終目的是保證核心服務可用,即使是有損的。而且有些服務是無法降級的(如加入購物車、結算)。

在進行降級之前要對系統進行梳理,看看系統是不是可以丟卒保帥;從而梳理出哪些必須誓死保護,哪些可降級;比如可以參考日志級別設置預案:

一般:比如有些服務偶爾因為網絡抖動或者服務正在上線而超時,可以自動降級;

警告:有些服務在一段時間內成功率有波動(如在95~100%之間),可以自動降級或人工降級,並發送告警;

錯誤:比如可用率低於90%,或者數據庫連接池被打爆了,或者訪問量突然猛增到系統能承受的最大閥值,此時可以根據情況自動降級或者人工降級;

嚴重錯誤:比如因為特殊原因數據錯誤了,此時需要緊急人工降級。

服務降級的目的,是為了防止Redis服務故障,導致數據庫跟着一起發生雪崩問題。因此,對於不重要的緩存數據,可以采取服務降級策略,例如一個比較常見的做法就是,Redis出現問題,不去數據庫查詢,而是直接返回默認值給用戶。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM