一:實驗數據
對上一篇文章中的數據進行排序處理:
13480253104 180 200 380
13502468823 102 7335 7437
13560439658 5892 400 6292
13600217502 186852 200 187052
13602846565 12 1938 1950
13660577991 9 6960 6969
13719199419 0 200 200
13726230503 2481 24681 27162
13760778710 120 200 320
13823070001 180 200 380
13826544101 0 200 200
13922314466 3008 3720 6728
13925057413 63 11058 11121
13926251106 0 200 200
13926435656 1512 200 1712
15013685858 27 3659 3686
15920133257 20 3156 3176
15989002119 3 1938 1941
18211575961 12 1527 1539
18320173382 18 9531 9549
84138413 4116 1432 5548
二:MapReduce程序編寫

(一)自定義數據結構FlowBean編寫
package cn.hadoop.mr.wc;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class FlowBean implements WritableComparable<FlowBean> {
private String phoneNB;
private long up_flow;
private long down_flow;
private long sum_flow;
public FlowBean() {} //無參構造函數,用於反序列化時使用
public FlowBean(String phoneNB, long up_flow, long down_flow) {
this.phoneNB = phoneNB;
this.up_flow = up_flow;
this.down_flow = down_flow;
this.sum_flow = up_flow + down_flow;
}
public String getPhoneNB() {
return phoneNB;
}
public void setPhoneNB(String phoneNB) {
this.phoneNB = phoneNB;
}
public long getUp_flow() {
return up_flow;
}
public void setUp_flow(long up_flow) {
this.up_flow = up_flow;
}
public long getDown_flow() {
return down_flow;
}
public void setDown_flow(long down_flow) {
this.down_flow = down_flow;
}
public long getSum_flow() {
return up_flow + down_flow;
}
//用於序列化
@Override
public void write(DataOutput out) throws IOException {
// TODO Auto-generated method stub
out.writeUTF(phoneNB);
out.writeLong(up_flow);
out.writeLong(down_flow);
out.writeLong(up_flow+down_flow);
}
//用於反序列化
@Override
public void readFields(DataInput in) throws IOException {
// TODO Auto-generated method stub
phoneNB = in.readUTF();
up_flow = in.readLong();
down_flow = in.readLong();
sum_flow = in.readLong();
}
@Override public int compareTo(FlowBean o) { //用於排序操作 return sum_flow > o.sum_flow ? -1 : 1; //返回值為-1,則排在前面 }
@Override
public String toString() {
return "" + up_flow + "\t" + down_flow + "\t"+ sum_flow;
}
}
(二)Map程序編寫
package cn.hadoop.rs;
import java.io.IOException;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import cn.hadoop.mr.wc.FlowBean;
public class ResSortMapper extends Mapper<LongWritable, Text, FlowBean, NullWritable>{
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, FlowBean, NullWritable>.Context context)
throws IOException, InterruptedException {
//獲取一行數據
String line = value.toString();
//進行文本分割
String[] fields = StringUtils.split(line, '\t');
//數據獲取
String phoneNB = fields[0];
long up_flow = Long.parseLong(fields[1]);
long down_flow = Long.parseLong(fields[2]);
context.write(new FlowBean(phoneNB, up_flow, down_flow), NullWritable.get());
}
}
(三)Reduce程序編寫
package cn.hadoop.rs;
import java.io.IOException;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import cn.hadoop.mr.wc.FlowBean;
//會在reduce接收數據時,對key進行排序
public class ResSortReducer extends Reducer<FlowBean, NullWritable, Text, FlowBean>{
@Override
protected void reduce(FlowBean key, Iterable<NullWritable> values,
Reducer<FlowBean, NullWritable, Text, FlowBean>.Context context) throws IOException, InterruptedException {
String phoneNB = key.getPhoneNB();
context.write(new Text(phoneNB), key);
}
}
注意:排序比較會在Reduce接收到key時進行排序,所以我們需要對輸入的key進行處理
(四)主函數進行調用
package cn.hadoop.rs;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import cn.hadoop.mr.wc.FlowBean;
public class ResSortRunner {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(ResSortRunner.class);
job.setMapperClass(ResSortMapper.class);
job.setReducerClass(ResSortReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
(五)結果測試
hadoop jar rs.jar cn.hadoop.rs.ResSortRunner /fs/output1 /fs/output6

三:實現將兩個job在main中一次執行

(一)修改main方法,實現連續調用兩個job
package cn.hadoop.rs;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import cn.hadoop.fs.FlowSumMapper;
import cn.hadoop.fs.FlowSumReducer;
import cn.hadoop.fs.FlowSumRunner;
import cn.hadoop.mr.wc.FlowBean;
public class ResSortRunner {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf1 = new Configuration();
Job job1 = Job.getInstance(conf1);
job1.setJarByClass(FlowSumRunner.class);
job1.setMapperClass(FlowSumMapper.class);
job1.setReducerClass(FlowSumReducer.class);
job1.setOutputKeyClass(Text.class);
job1.setOutputValueClass(FlowBean.class);
job1.setMapOutputKeyClass(Text.class);
job1.setMapOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1]));
if(!job1.waitForCompletion(true)) {
System.exit(1);
}
Configuration conf2 = new Configuration();
Job job2 = Job.getInstance(conf2);
job2.setJarByClass(ResSortRunner.class);
job2.setMapperClass(ResSortMapper.class);
job2.setReducerClass(ResSortReducer.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(FlowBean.class);
job2.setMapOutputKeyClass(FlowBean.class);
job2.setMapOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job2, new Path(args[1]));
FileOutputFormat.setOutputPath(job2, new Path(args[2]));
System.exit(job2.waitForCompletion(true)?0:1);
}
}
(二)實驗測試,結果查看
hadoop jar rs.jar cn.hadoop.rs.ResSortRunner /fs/input /fs/outdata1 /fs/outdata2

(三)補充:使用時,不推薦這種方法。中間結果單獨輸出,使用shell將各個程序串聯,靈活性更大,更容易調試