1. 場景描述
軟件老王在上一節介紹到相似性熱度統計的4個需求(文本相似性熱度統計(python版)),根據需求要從不同維度進行統計:
(1)分組不分句熱度統計(根據某列首先進行分組,然后再對描述類列進行相似性統計);
(2)分組分句熱度統計(根據某列首先進行分組,然后對描述類列按照標點符號進行拆分,然后再對這些句進行熱度統計);
(3)整句及分句熱度統計;(對描述類列/按標點符號進行分句,進行熱度統計)
(4)熱詞統計(對描述類類進行熱詞統計,反饋改方式做不不大)
2. 解決方案
熱詞統計統計對業務沒啥幫助,軟件老王就是用了jieba分詞,已經包含在其他幾個需求中了,不再介紹了,直接介紹整句及分句熱度統計,方案包含完整的excel讀入,結果寫入到excel及導航到明細等。
2.1 完整代碼
完整代碼,有需要的朋友可以直接拿走,不想看代碼介紹的,可以直接拿走執行。
import jieba.posseg as pseg
import jieba.analyse
import xlwt
import openpyxl
from gensim import corpora, models, similarities
import re
#停詞函數
def StopWordsList(filepath):
wlst = [w.strip() for w in open(filepath, 'r', encoding='utf8').readlines()]
return wlst
def str_to_hex(s):
return ''.join([hex(ord(c)).replace('0x', '') for c in s])
# jieba分詞
def seg_sentence(sentence, stop_words):
stop_flag = ['x', 'c', 'u', 'd', 'p', 't', 'uj', 'f', 'r']
sentence_seged = pseg.cut(sentence)
outstr = []
for word, flag in sentence_seged:
if word not in stop_words and flag not in stop_flag:
outstr.append(word)
return outstr
if __name__ == '__main__':
#1 這些是jieba分詞的自定義詞典,軟件老王這里添加的格式行業術語,格式就是文檔,一列一個詞一行就行了,
# 這個幾個詞典軟件老王就不上傳了,可注釋掉。
jieba.load_userdict("g1.txt")
jieba.load_userdict("g2.txt")
jieba.load_userdict("g3.txt")
#2 停用詞,簡單理解就是這次詞不分割,這個軟件老王找的網上通用的,會提交下。
spPath = 'stop.txt'
stop_words = StopWordsList(spPath)
#3 excel處理
wbk = xlwt.Workbook(encoding='ascii')
sheet = wbk.add_sheet("軟件老王sheet") # sheet名稱
sheet.write(0, 0, '表頭-軟件老王1')
sheet.write(0, 1, '表頭-軟件老王2')
sheet.write(0, 2, '導航-鏈接到明細sheet表')
wb = openpyxl.load_workbook('軟件老王-source.xlsx')
ws = wb.active
col = ws['B']
# 4 相似性處理
rcount = 1
texts = []
orig_txt = []
key_list = []
name_list = []
sheet_list = []
for cell in col:
if cell.value is None:
continue
if not isinstance(cell.value, str):
continue
item = cell.value.strip('\n\r').split('\t') # 制表格切分
string = item[0]
if string is None or len(string) == 0:
continue
else:
textstr = seg_sentence(string, stop_words)
texts.append(textstr)
orig_txt.append(string)
dictionary = corpora.Dictionary(texts)
feature_cnt = len(dictionary.token2id.keys())
corpus = [dictionary.doc2bow(text) for text in texts]
tfidf = models.LsiModel(corpus)
index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=feature_cnt)
result_lt = []
word_dict = {}
count =0
for keyword in orig_txt:
count = count+1
print('開始執行,第'+ str(count)+'行')
if keyword in result_lt or keyword is None or len(keyword) == 0:
continue
kw_vector = dictionary.doc2bow(seg_sentence(keyword, stop_words))
sim = index[tfidf[kw_vector]]
result_list = []
for i in range(len(sim)):
if sim[i] > 0.5:
if orig_txt[i] in result_lt and orig_txt[i] not in result_list:
continue
result_list.append(orig_txt[i])
result_lt.append(orig_txt[i])
if len(result_list) >0:
word_dict[keyword] = len(result_list)
if len(result_list) >= 1:
sname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", keyword[0:10])+ '_'\
+ str(len(result_list)+ len(str_to_hex(keyword))) + str_to_hex(keyword)[-5:]
sheet_t = wbk.add_sheet(sname) # Excel單元格名字
for i in range(len(result_list)):
sheet_t.write(i, 0, label=result_list[i])
#5 按照熱度排序 -軟件老王
with open("rjlw.txt", 'w', encoding='utf-8') as wf2:
orderList = list(word_dict.values())
orderList.sort(reverse=True)
count = len(orderList)
for i in range(count):
for key in word_dict:
if word_dict[key] == orderList[i]:
key_list.append(key)
word_dict[key] = 0
wf2.truncate()
#6 寫入目標excel
for i in range(len(key_list)):
sheet.write(i+rcount, 0, label=key_list[i])
sheet.write(i+rcount, 1, label=orderList[i])
if orderList[i] >= 1:
shname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", key_list[i][0:10]) \
+ '_'+ str(orderList[i]+ len(str_to_hex(key_list[i])))+ str_to_hex(key_list[i])[-5:]
link = 'HYPERLINK("#%s!A1";"%s")' % (shname, shname)
sheet.write(i+rcount, 2, xlwt.Formula(link))
rcount = rcount + len(key_list)
key_list = []
orderList = []
texts = []
orig_txt = []
wbk.save('軟件老王-target.xls')
2.2 代碼說明
(1) #1 以下代碼 是jieba分詞的自定義詞典,軟件老王這里添加的格式行業術語,格式就是文檔,就一列,一個詞一行就行了, 這個幾個行業詞典軟件老王就不上傳了,可注釋掉。
jieba.load_userdict("g1.txt")
jieba.load_userdict("g2.txt")
jieba.load_userdict("g3.txt")
(2) #2 停用詞,簡單理解就是這些詞不拆分,這個文件軟件老王是從網上找的通用的,也可以不用。
spPath = 'stop.txt'
stop_words = StopWordsList(spPath)
(3) #3 excel處理,這里新增了名稱為“軟件老王sheet”的sheet,表頭有三個,分別為“表頭-軟件老王1”,“表頭-軟件老王2”,“導航-鏈接到明細sheet表”,其中“導航-鏈接到明細sheet表”帶超鏈接,可以導航到明細數據。
wbk = xlwt.Workbook(encoding='ascii')
sheet = wbk.add_sheet("軟件老王sheet") # sheet名稱
sheet.write(0, 0, '表頭-軟件老王1')
sheet.write(0, 1, '表頭-軟件老王2')
sheet.write(0, 2, '導航-鏈接到明細sheet表')
wb = openpyxl.load_workbook('軟件老王-source.xlsx')
ws = wb.active
col = ws['B']
(4)# 4 相似性處理
算法原理在(文本相似性熱度統計(python版)中有詳細說明。
rcount = 1
texts = []
orig_txt = []
key_list = []
name_list = []
sheet_list = []
for cell in col:
if cell.value is None:
continue
if not isinstance(cell.value, str):
continue
item = cell.value.strip('\n\r').split('\t') # 制表格切分
string = item[0]
if string is None or len(string) == 0:
continue
else:
textstr = seg_sentence(string, stop_words)
texts.append(textstr)
orig_txt.append(string)
dictionary = corpora.Dictionary(texts)
feature_cnt = len(dictionary.token2id.keys())
corpus = [dictionary.doc2bow(text) for text in texts]
tfidf = models.LsiModel(corpus)
index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features=feature_cnt)
result_lt = []
word_dict = {}
count =0
for keyword in orig_txt:
count = count+1
print('開始執行,第'+ str(count)+'行')
if keyword in result_lt or keyword is None or len(keyword) == 0:
continue
kw_vector = dictionary.doc2bow(seg_sentence(keyword, stop_words))
sim = index[tfidf[kw_vector]]
result_list = []
for i in range(len(sim)):
if sim[i] > 0.5:
if orig_txt[i] in result_lt and orig_txt[i] not in result_list:
continue
result_list.append(orig_txt[i])
result_lt.append(orig_txt[i])
if len(result_list) >0:
word_dict[keyword] = len(result_list)
if len(result_list) >= 1:
sname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", keyword[0:10])+ '_'\
+ str(len(result_list)+ len(str_to_hex(keyword))) + str_to_hex(keyword)[-5:]
sheet_t = wbk.add_sheet(sname) # Excel單元格名字
for i in range(len(result_list)):
sheet_t.write(i, 0, label=result_list[i])
(5) #5 按照熱度高低排序 -軟件老王
with open("rjlw.txt", 'w', encoding='utf-8') as wf2:
orderList = list(word_dict.values())
orderList.sort(reverse=True)
count = len(orderList)
for i in range(count):
for key in word_dict:
if word_dict[key] == orderList[i]:
key_list.append(key)
word_dict[key] = 0
wf2.truncate()
(6) #6 寫入目標excel-軟件老王
for i in range(len(key_list)):
sheet.write(i+rcount, 0, label=key_list[i])
sheet.write(i+rcount, 1, label=orderList[i])
if orderList[i] >= 1:
shname = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", key_list[i][0:10]) \
+ '_'+ str(orderList[i]+ len(str_to_hex(key_list[i])))+ str_to_hex(key_list[i])[-5:]
link = 'HYPERLINK("#%s!A1";"%s")' % (shname, shname)
sheet.write(i+rcount, 2, xlwt.Formula(link))
rcount = rcount + len(key_list)
key_list = []
orderList = []
texts = []
orig_txt = []
wbk.save('軟件老王-target.xls')
2.3 效果圖
(1)軟件老王-source.xlsx
(2)軟件老王-target.xls
(3)簡單說明
真實數據不太方便公布,隨意造了幾個演示數據說明下效果格式。
I’m 「軟件老王」,如果覺得還可以的話,關注下唄,后續更新秒知!歡迎討論區、同名公眾號留言交流!