疫情居家隔離期間,在網上看了幾個技術教學視頻,意在查漏補缺,雖然網上這些視頻的水平魚龍混雜,但也有講得相當不錯的,這是昨晚看到的馬老師講的一道面試題,記錄一下:

如上圖,有2個同時運行的線程,一個輸出ABCDE,一個輸出12345,要求交替輸出,即:最終輸出A1B2C3D4E5,而且要求thread-1先執行。
主要考點:二個線程如何通信?通俗點講,1個線程干到一半,怎么讓另1個線程知道我在等他?
方法1:利用LockSupport
import java.util.concurrent.locks.LockSupport;
public class Test01 {
//這里一定要初始化成null,否則在線程內部無法引用,會提示未初始化
static Thread t1 = null, t2 = null;
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
t1 = new Thread(() -> {
for (char c : cA) {
System.out.print(c);
//解鎖T2線程(注:unpark線程t2后,t2即使再調用LockSupport.park也鎖不住)
LockSupport.unpark(t2);
//再把自己T1卡住(直到T2為它解鎖)
LockSupport.park(t1);
}
}, "t1");
t2 = new Thread(() -> {
for (char c : cB) {
//先把T2自己卡住(直到T1為它解鎖)
LockSupport.park(t2);
System.out.print(c);
//再把T1解鎖
LockSupport.unpark(t1);
}
}, "t2");
t1.start();
t2.start();
}
}
優點:邏輯清晰,代碼簡潔,可認為是最優解。
方法2:模擬自旋鎖的做法,利用標志位不斷嘗試
import java.util.concurrent.atomic.AtomicInteger;
public class Test02a {
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
//AtomicInteger保證線程安全,值1表示t1可繼續 ,值2表示t2可繼續
AtomicInteger flag = new AtomicInteger(1);
new Thread(() -> {
for (char c : cA) {
//不斷"自旋"重試
while (flag.get() != 1) {
}
System.out.print(c);
//標志位指向t2
flag.set(2);
}
}, "t1").start();
new Thread(() -> {
for (char c : cB) {
while (flag.get() != 2) {
}
System.out.print(c);
//標志位指向t1
flag.set(1);
}
}, "t2").start();
}
}
優點:思路純朴無華,容易理解。缺點:自旋嘗試比較占用cpu,如果有更多線程參與競爭,cpu可能會較高。
這個方法還有一個變體,不借助並發包下的AtomicInteger,可以改用static valatile + enum變量保證線程安全:
public class Test02b {
enum ReadyToGo {
T1, T2
}
static volatile ReadyToGo r = ReadyToGo.T1;
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
new Thread(() -> {
for (char c : cA) {
while (!r.equals(ReadyToGo.T1)) {
}
System.out.print(c);
r = ReadyToGo.T2;
}
}).start();
new Thread(() -> {
for (char c : cB) {
while (!r.equals(ReadyToGo.T2)) {
}
System.out.print(c);
r = ReadyToGo.T1;
}
}).start();
}
}
方法3:利用ReentrantLock可重入鎖及Condition條件
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Test03 {
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
Lock lock = new ReentrantLock();
Condition cond1 = lock.newCondition();
Condition cond2 = lock.newCondition();
CountDownLatch latch = new CountDownLatch(1);
new Thread(() -> {
//保證t1先執行
latch.countDown();
lock.lock();
try {
for (char c : cA) {
System.out.print(c);
//"喚醒"滿足條件2的線程t2
cond2.signal();
//卡住滿足條件1的線程t1
cond1.await();
}
//輸出最后1個字符后,把t2也喚醒(否則t2一直await永遠退出不了)
cond2.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}, "t1").start();
new Thread(() -> {
try {
//先把t2卡住,保證t1先輸出
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
lock.lock();
try {
for (char c : cB) {
System.out.print(c);
//"喚醒"滿足條件1的線程t1
cond1.signal();
//卡住滿足條件2的線程t2
cond2.await();
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}, "t2").start();
}
}
方法4:利用阻塞隊列BlockingQueue
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
public class Test04 {
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
BlockingQueue<Boolean> q1 = new LinkedBlockingQueue<>(1);
BlockingQueue<Boolean> q2 = new LinkedBlockingQueue<>(1);
new Thread(() -> {
for (char c : cA) {
System.out.print(c);
try {
//放行t2
q2.put(true);
//阻塞t1
q1.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "t1").start();
new Thread(() -> {
for (char c : cB) {
try {
//先阻塞t2
q2.take();
System.out.print(c);
//再放行t1
q1.put(true);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "t2").start();
}
}
點評:巧妙利用了阻塞隊列的特性,思路新穎
方法5:利用IO管道輸入/輸出流
import java.io.IOException;
import java.io.PipedInputStream;
import java.io.PipedOutputStream;
public class Test05 {
public static void main(String[] args) throws IOException {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
PipedInputStream input1 = new PipedInputStream();
PipedInputStream input2 = new PipedInputStream();
PipedOutputStream output1 = new PipedOutputStream();
PipedOutputStream output2 = new PipedOutputStream();
input1.connect(output2);
input2.connect(output1);
//相當於令牌(在2個管道中流轉)
String flag = "1";
new Thread(() -> {
byte[] buffer = new byte[1];
for (char c : cA) {
try {
System.out.print(c);
//將令牌通過output1->input2給到t2
output1.write(flag.getBytes());
//從output2->input1讀取令牌(沒有數據時,該方法會block,即:相當於卡住自己)
input1.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
}
}, "t1").start();
new Thread(() -> {
byte[] buffer = new byte[1];
for (char c : cB) {
try {
//讀取t1通過output1->input2傳過來的令牌(無數據時,會block住自己)
input2.read(buffer);
System.out.print(c);
//將令牌通過output2->input1給到t1
output2.write(flag.getBytes());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "t2").start();
}
}
效率極低,純屬炫技。主要利用了管道流read操作,無數據時,會block的特性,類似阻塞隊列。
方法6:利用synchronized/notify/wait
import java.util.concurrent.CountDownLatch;
public class Test06 {
public static void main(String[] args) {
char[] cA = "ABCDEFG".toCharArray();
char[] cB = "1234567".toCharArray();
Object lockObj = new Object();
CountDownLatch latch = new CountDownLatch(1);
new Thread(() -> {
//保證t1先輸出
latch.countDown();
synchronized (lockObj) {
for (char c : cA) {
System.out.print(c);
//通知等待鎖釋放的其它線程,即:交出鎖,然后通知t2去搶
lockObj.notify();
try {
//自己進入等待鎖的隊列(即:卡住自己)
lockObj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//輸出完后,把自己喚醒,以便線程能結束
lockObj.notify();
}
}, "t1").start();
new Thread(() -> {
try {
//先卡住t2,讓t1先輸入
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lockObj) {
for (char c : cB) {
System.out.print(c);
//通知等待鎖釋放的其它線程,即:交出鎖,然后通知t1去搶
lockObj.notify();
try {
//自己進入等待鎖的隊列(即:卡住自己)
lockObj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// lockObj.notify();
}
}, "t2").start();
}
}
這是正統解法,原理是先讓t1搶到鎖(這時t2在等待鎖),然后輸出1個字符串后,通知t2搶鎖,然后t1開始等鎖,t2也是類似原理。
