假期充電: 一道並發java面試題的N種解法


疫情居家隔離期間,在網上看了幾個技術教學視頻,意在查漏補缺,雖然網上這些視頻的水平魚龍混雜,但也有講得相當不錯的,這是昨晚看到的馬老師講的一道面試題,記錄一下:

 

如上圖,有2個同時運行的線程,一個輸出ABCDE,一個輸出12345,要求交替輸出,即:最終輸出A1B2C3D4E5,而且要求thread-1先執行。

主要考點:二個線程如何通信?通俗點講,1個線程干到一半,怎么讓另1個線程知道我在等他?

 

方法1:利用LockSupport

import java.util.concurrent.locks.LockSupport;

public class Test01 {

    //這里一定要初始化成null,否則在線程內部無法引用,會提示未初始化
    static Thread t1 = null, t2 = null;

    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        t1 = new Thread(() -> {
            for (char c : cA) {
                System.out.print(c);
                //解鎖T2線程(注:unpark線程t2后,t2即使再調用LockSupport.park也鎖不住)
                LockSupport.unpark(t2);
                //再把自己T1卡住(直到T2為它解鎖)
                LockSupport.park(t1);
            }
        }, "t1");

        t2 = new Thread(() -> {
            for (char c : cB) {
                //先把T2自己卡住(直到T1為它解鎖)
                LockSupport.park(t2);
                System.out.print(c);
                //再把T1解鎖
                LockSupport.unpark(t1);
            }

        }, "t2");

        t1.start();
        t2.start();
    }
}

優點:邏輯清晰,代碼簡潔,可認為是最優解。 

 

方法2:模擬自旋鎖的做法,利用標志位不斷嘗試

import java.util.concurrent.atomic.AtomicInteger;

public class Test02a {
    
    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        //AtomicInteger保證線程安全,值1表示t1可繼續 ,值2表示t2可繼續
        AtomicInteger flag = new AtomicInteger(1);

        new Thread(() -> {
            for (char c : cA) {
                //不斷"自旋"重試
                while (flag.get() != 1) {
                }
                System.out.print(c);
                //標志位指向t2
                flag.set(2);
            }
        }, "t1").start();

        new Thread(() -> {
            for (char c : cB) {
                while (flag.get() != 2) {
                }
                System.out.print(c);
                //標志位指向t1
                flag.set(1);
            }
        }, "t2").start();
    }
}

優點:思路純朴無華,容易理解。缺點:自旋嘗試比較占用cpu,如果有更多線程參與競爭,cpu可能會較高。

這個方法還有一個變體,不借助並發包下的AtomicInteger,可以改用static valatile + enum變量保證線程安全:

public class Test02b {

    enum ReadyToGo {
        T1, T2
    }

    static volatile ReadyToGo r = ReadyToGo.T1;

    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        new Thread(() -> {
            for (char c : cA) {
                while (!r.equals(ReadyToGo.T1)) {
                }
                System.out.print(c);
                r = ReadyToGo.T2;
            }
        }).start();

        new Thread(() -> {
            for (char c : cB) {
                while (!r.equals(ReadyToGo.T2)) {
                }
                System.out.print(c);
                r = ReadyToGo.T1;
            }
        }).start();
    }
}

  

方法3:利用ReentrantLock可重入鎖及Condition條件

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Test03 {

    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        Lock lock = new ReentrantLock();
        Condition cond1 = lock.newCondition();
        Condition cond2 = lock.newCondition();

        CountDownLatch latch = new CountDownLatch(1);

        new Thread(() -> {
            //保證t1先執行
            latch.countDown();

            lock.lock();
            try {
                for (char c : cA) {
                    System.out.print(c);
                    //"喚醒"滿足條件2的線程t2
                    cond2.signal();
                    //卡住滿足條件1的線程t1
                    cond1.await();
                }
                //輸出最后1個字符后,把t2也喚醒(否則t2一直await永遠退出不了)
                cond2.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }, "t1").start();

        new Thread(() -> {
            try {
                //先把t2卡住,保證t1先輸出
                latch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            lock.lock();
            try {
                for (char c : cB) {
                    System.out.print(c);
                    //"喚醒"滿足條件1的線程t1
                    cond1.signal();
                    //卡住滿足條件2的線程t2
                    cond2.await();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }, "t2").start();
        
    }
}

 

方法4:利用阻塞隊列BlockingQueue

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

public class Test04 {

    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        BlockingQueue<Boolean> q1 = new LinkedBlockingQueue<>(1);
        BlockingQueue<Boolean> q2 = new LinkedBlockingQueue<>(1);

        new Thread(() -> {
            for (char c : cA) {
                System.out.print(c);
                try {
                    //放行t2
                    q2.put(true);
                    //阻塞t1
                    q1.take();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "t1").start();

        new Thread(() -> {
            for (char c : cB) {
                try {
                    //先阻塞t2
                    q2.take();
                    System.out.print(c);
                    //再放行t1
                    q1.put(true);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }, "t2").start();
        
    }
}

點評:巧妙利用了阻塞隊列的特性,思路新穎

 

方法5:利用IO管道輸入/輸出流

import java.io.IOException;
import java.io.PipedInputStream;
import java.io.PipedOutputStream;

public class Test05 {

    public static void main(String[] args) throws IOException {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        PipedInputStream input1 = new PipedInputStream();
        PipedInputStream input2 = new PipedInputStream();
        PipedOutputStream output1 = new PipedOutputStream();
        PipedOutputStream output2 = new PipedOutputStream();

        input1.connect(output2);
        input2.connect(output1);

        //相當於令牌(在2個管道中流轉)
        String flag = "1";

        new Thread(() -> {

            byte[] buffer = new byte[1];
            for (char c : cA) {
                try {
                    System.out.print(c);
                    //將令牌通過output1->input2給到t2
                    output1.write(flag.getBytes());
                    //從output2->input1讀取令牌(沒有數據時,該方法會block,即:相當於卡住自己)
                    input1.read(buffer);
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }, "t1").start();

        new Thread(() -> {
            byte[] buffer = new byte[1];
            for (char c : cB) {
                try {
                    //讀取t1通過output1->input2傳過來的令牌(無數據時,會block住自己)
                    input2.read(buffer);
                    System.out.print(c);
                    //將令牌通過output2->input1給到t1
                    output2.write(flag.getBytes());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }, "t2").start();
    }
}

效率極低,純屬炫技。主要利用了管道流read操作,無數據時,會block的特性,類似阻塞隊列。

 

方法6:利用synchronized/notify/wait

import java.util.concurrent.CountDownLatch;

public class Test06 {

    public static void main(String[] args) {
        char[] cA = "ABCDEFG".toCharArray();
        char[] cB = "1234567".toCharArray();

        Object lockObj = new Object();

        CountDownLatch latch = new CountDownLatch(1);

        new Thread(() -> {
            //保證t1先輸出
            latch.countDown();

            synchronized (lockObj) {
                for (char c : cA) {
                    System.out.print(c);
                    //通知等待鎖釋放的其它線程,即:交出鎖,然后通知t2去搶
                    lockObj.notify();
                    try {
                        //自己進入等待鎖的隊列(即:卡住自己)
                        lockObj.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                //輸出完后,把自己喚醒,以便線程能結束
                lockObj.notify();
            }

        }, "t1").start();

        new Thread(() -> {
            try {
                //先卡住t2,讓t1先輸入
                latch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            synchronized (lockObj) {
                for (char c : cB) {
                    System.out.print(c);
                    //通知等待鎖釋放的其它線程,即:交出鎖,然后通知t1去搶
                    lockObj.notify();
                    try {
                        //自己進入等待鎖的隊列(即:卡住自己)
                        lockObj.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
//                lockObj.notify();
            }
        }, "t2").start();
    }
}

這是正統解法,原理是先讓t1搶到鎖(這時t2在等待鎖),然后輸出1個字符串后,通知t2搶鎖,然后t1開始等鎖,t2也是類似原理。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM