spark的運行指標監控


 
         

 

sparkUi的4040界面已經有了運行監控指標,為什么我們還要自定義存入redis?

1.結合自己的業務,可以將監控頁面集成到自己的數據平台內,方便問題查找,郵件告警

2.可以在sparkUi的基礎上,添加一些自己想要指標統計

一、spark的SparkListener
sparkListener是一個接口,我們使用時需要自定義監控類實現sparkListener接口中的各種抽象方法,SparkListener 下各個事件對應的函數名非常直白,即如字面所表達意思。 想對哪個階段的事件做一些自定義的動作,變繼承SparkListener實現對應的函數即可,這些方法會幫助我監控spark運行時各個階段的數據量,從而我們可以獲得這些監控指標數據

abstract class SparkListener extends SparkListenerInterface {
//stage完成的時調用 override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = { }
//stage提交時調用 override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = { } override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = { } override def onTaskGettingResult(taskGettingResult: SparkListenerTaskGettingResult): Unit = { } //task結束時調用 override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { } override def onJobStart(jobStart: SparkListenerJobStart): Unit = { } override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = { } override def onEnvironmentUpdate(environmentUpdate: SparkListenerEnvironmentUpdate): Unit = { } override def onBlockManagerAdded(blockManagerAdded: SparkListenerBlockManagerAdded): Unit = { } override def onBlockManagerRemoved( blockManagerRemoved: SparkListenerBlockManagerRemoved): Unit = { } override def onUnpersistRDD(unpersistRDD: SparkListenerUnpersistRDD): Unit = { } override def onApplicationStart(applicationStart: SparkListenerApplicationStart): Unit = { } override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = { } override def onExecutorMetricsUpdate( executorMetricsUpdate: SparkListenerExecutorMetricsUpdate): Unit = { } override def onExecutorAdded(executorAdded: SparkListenerExecutorAdded): Unit = { } override def onExecutorRemoved(executorRemoved: SparkListenerExecutorRemoved): Unit = { } override def onBlockUpdated(blockUpdated: SparkListenerBlockUpdated): Unit = { } override def onOtherEvent(event: SparkListenerEvent): Unit = { } }

1.實現自己SparkListener,對onTaskEnd方法是指標存入redis

(1)SparkListener是一個接口,創建一個MySparkAppListener類繼承SparkListener,實現里面的onTaskEnd即可

(2)方法:override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { }

  SparkListenerTaskEnd類:

case class SparkListenerTaskEnd(
                                 //spark的stageId
                                 stageId: Int,
                                 //嘗試的階段Id(也就是下級Stage?)
                                 stageAttemptId: Int,
                                 taskType: String,
                                 reason: TaskEndReason,
                                 //task信息
                                 taskInfo: TaskInfo,
                                 // task指標
                                 @Nullable taskMetrics: TaskMetrics)
  extends SparkListenerEvent

  

(3)在 onTaskEnd方法內可以通過成員taskinfo與taskMetrics獲取的信息

/**
* 1、taskMetrics
* 2、shuffle
* 3、task運行(input output)
* 4、taskInfo
**/
(4)TaskMetrics可以獲取的監控信息
class TaskMetrics private[spark] () extends Serializable {
  // Each metric is internally represented as an accumulator
  private val _executorDeserializeTime = new LongAccumulator
  private val _executorDeserializeCpuTime = new LongAccumulator
  private val _executorRunTime = new LongAccumulator
  private val _executorCpuTime = new LongAccumulator
  private val _resultSize = new LongAccumulator
  private val _jvmGCTime = new LongAccumulator
  private val _resultSerializationTime = new LongAccumulator
  private val _memoryBytesSpilled = new LongAccumulator
  private val _diskBytesSpilled = new LongAccumulator
  private val _peakExecutionMemory = new LongAccumulator
  private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
val inputMetrics: InputMetrics = new InputMetrics()

/**
 * Metrics related to writing data externally (e.g. to a distributed filesystem),
 * defined only in tasks with output.
 */
val outputMetrics: OutputMetrics = new OutputMetrics()

/**
 * Metrics related to shuffle read aggregated across all shuffle dependencies.
 * This is defined only if there are shuffle dependencies in this task.
 */
val shuffleReadMetrics: ShuffleReadMetrics = new ShuffleReadMetrics()

/**
 * Metrics related to shuffle write, defined only in shuffle map stages.
 */
val shuffleWriteMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

(5)代碼實現並存入redis

/**
 * 需求1.想自定義spark的job運行情況存入redis,集成到自己的業務后台展示中
 */
class MySparkAppListener extends SparkListener with Logging {

  val redisConf = "jedisConfig.properties"

  val jedis: Jedis = JedisUtil.getInstance().getJedis

  //父類的第一個方法
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
    //在 onTaskEnd方法內可以獲取的信息有
    /**
     * 1、taskMetrics
     * 2、shuffle
     * 3、task運行(input output)
     * 4、taskInfo
     **/

    val currentTimestamp = System.currentTimeMillis()
    // TaskMetrics(task的指標)可以拿到的指標
    /**
     * private val _executorDeserializeTime = new LongAccumulator
     * private val _executorDeserializeCpuTime = new LongAccumulator
     * private val _executorRunTime = new LongAccumulator
     * private val _executorCpuTime = new LongAccumulator
     * private val _resultSize = new LongAccumulator
     * private val _jvmGCTime = new LongAccumulator
     * private val _resultSerializationTime = new LongAccumulator
     * private val _memoryBytesSpilled = new LongAccumulator
     * private val _diskBytesSpilled = new LongAccumulator
     * private val _peakExecutionMemory = new LongAccumulator
     * private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
     */
    val metrics = taskEnd.taskMetrics
    val taskMetricsMap = scala.collection.mutable.HashMap(
      "executorDeserializeTime" -> metrics.executorDeserializeTime, //executor的反序列化時間
      "executorDeserializeCpuTime" -> metrics.executorDeserializeCpuTime, //executor的反序列化的 cpu時間
      "executorRunTime" -> metrics.executorRunTime, //executoor的運行時間
      "resultSize" -> metrics.resultSize, //結果集大小
      "jvmGCTime" -> metrics.jvmGCTime, //
      "resultSerializationTime" -> metrics.resultSerializationTime,
      "memoryBytesSpilled" -> metrics.memoryBytesSpilled, //內存溢寫的大小
      "diskBytesSpilled" -> metrics.diskBytesSpilled, //溢寫到磁盤的大小
      "peakExecutionMemory" -> metrics.peakExecutionMemory //executor的最大內存
    )

    val jedisKey = "taskMetrics_" + {
      currentTimestamp
    }
    jedis.set(jedisKey, Json(DefaultFormats).write(jedisKey))
    jedis.pexpire(jedisKey, 3600)


    //======================shuffle指標================================
    val shuffleReadMetrics = metrics.shuffleReadMetrics
    val shuffleWriteMetrics = metrics.shuffleWriteMetrics

    //shuffleWriteMetrics shuffle讀過程的指標有這些
    /**
     * private[executor] val _bytesWritten = new LongAccumulator
     * private[executor] val _recordsWritten = new LongAccumulator
     * private[executor] val _writeTime = new LongAccumulator
     */
    //shuffleReadMetrics shuffle寫過程的指標有這些
    /**
     * private[executor] val _remoteBlocksFetched = new LongAccumulator
     * private[executor] val _localBlocksFetched = new LongAccumulator
     * private[executor] val _remoteBytesRead = new LongAccumulator
     * private[executor] val _localBytesRead = new LongAccumulator
     * private[executor] val _fetchWaitTime = new LongAccumulator
     * private[executor] val _recordsRead = new LongAccumulator
     */

    val shuffleMap = scala.collection.mutable.HashMap(
      "remoteBlocksFetched" -> shuffleReadMetrics.remoteBlocksFetched, //shuffle遠程拉取數據塊
      "localBlocksFetched" -> shuffleReadMetrics.localBlocksFetched, //本地塊拉取
      "remoteBytesRead" -> shuffleReadMetrics.remoteBytesRead, //shuffle遠程讀取的字節數
      "localBytesRead" -> shuffleReadMetrics.localBytesRead, //讀取本地數據的字節
      "fetchWaitTime" -> shuffleReadMetrics.fetchWaitTime, //拉取數據的等待時間
      "recordsRead" -> shuffleReadMetrics.recordsRead, //shuffle讀取的記錄總數
      "bytesWritten" -> shuffleWriteMetrics.bytesWritten, //shuffle寫的總大小
      "recordsWritte" -> shuffleWriteMetrics.recordsWritten, //shuffle寫的總記錄數
      "writeTime" -> shuffleWriteMetrics.writeTime
    )

    val shuffleKey = s"shuffleKey${currentTimestamp}"
    jedis.set(shuffleKey, Json(DefaultFormats).write(shuffleMap))
    jedis.expire(shuffleKey, 3600)

    //=================輸入輸出========================
    val inputMetrics = taskEnd.taskMetrics.inputMetrics
    val outputMetrics = taskEnd.taskMetrics.outputMetrics

    val input_output = scala.collection.mutable.HashMap(
      "bytesRead" -> inputMetrics.bytesRead, //讀取的大小
      "recordsRead" -> inputMetrics.recordsRead, //總記錄數
      "bytesWritten" -> outputMetrics.bytesWritten,//輸出的大小
      "recordsWritten" -> outputMetrics.recordsWritten//輸出的記錄數
    )
    val input_outputKey = s"input_outputKey${currentTimestamp}"
    jedis.set(input_outputKey, Json(DefaultFormats).write(input_output))
    jedis.expire(input_outputKey, 3600)



    //####################taskInfo#######
    val taskInfo: TaskInfo = taskEnd.taskInfo

    val taskInfoMap = scala.collection.mutable.HashMap(
      "taskId" -> taskInfo.taskId ,
      "host" -> taskInfo.host ,
      "speculative" -> taskInfo.speculative , //推測執行
      "failed" -> taskInfo.failed ,
      "killed" -> taskInfo.killed ,
      "running" -> taskInfo.running

    )

    val taskInfoKey = s"taskInfo${currentTimestamp}"
    jedis.set(taskInfoKey , Json(DefaultFormats).write(taskInfoMap))
    jedis.expire(taskInfoKey , 3600)

  }

(5)程序測試

  sparkContext.addSparkListener方法添加自己監控主類

sc.addSparkListener(new MySparkAppListener())

使用wordcount進行簡單測試

 

 

 

二、spark實時監控

1.StreamingListener是實時監控的接口,里面有數據接收成功、錯誤、停止、批次提交、開始、完成等指標,原理與上述相同

trait StreamingListener {

  /** Called when a receiver has been started */
  def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { }

  /** Called when a receiver has reported an error */
  def onReceiverError(receiverError: StreamingListenerReceiverError) { }

  /** Called when a receiver has been stopped */
  def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { }

  /** Called when a batch of jobs has been submitted for processing. */
  def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { }

  /** Called when processing of a batch of jobs has started.  */
  def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { }

  /** Called when processing of a batch of jobs has completed. */
  def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { }

  /** Called when processing of a job of a batch has started. */
  def onOutputOperationStarted(
      outputOperationStarted: StreamingListenerOutputOperationStarted) { }

  /** Called when processing of a job of a batch has completed. */
  def onOutputOperationCompleted(
      outputOperationCompleted: StreamingListenerOutputOperationCompleted) { }
}

2.主要指標及用途

1.onReceiverError 

監控數據接收錯誤信息,進行郵件告警

2.onBatchCompleted 該批次完成時調用該方法

(1)sparkstreaming的偏移量提交時,當改批次執行完,才進行offset的保存入庫,(該無法保證統計入庫完成后程序中斷、offset未提交)
(2)批次處理時間大於了規定的窗口時間,程序出現阻塞,進行郵件告警

三、spark、yarn的web返回接口進行數據解析,獲取指標信息

1.啟動某個本地spark程序
訪問 :http://localhost:4040/metrics/json/,得到一串json數據,解析gauges,則可獲取所有的信息
{
    "version": "3.0.0", 
    "gauges": {
        "local-1581865176069.driver.BlockManager.disk.diskSpaceUsed_MB": {
            "value": 0
        }, 
        "local-1581865176069.driver.BlockManager.memory.maxMem_MB": {
            "value": 1989
        }, 
        "local-1581865176069.driver.BlockManager.memory.memUsed_MB": {
            "value": 0
        }, 
        "local-1581865176069.driver.BlockManager.memory.remainingMem_MB": {
            "value": 1989
        }, 
        "local-1581865176069.driver.DAGScheduler.job.activeJobs": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.job.allJobs": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.failedStages": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.runningStages": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.waitingStages": {
            "value": 0
        }
    }, 
    "counters": {
        "local-1581865176069.driver.HiveExternalCatalog.fileCacheHits": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.filesDiscovered": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.hiveClientCalls": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.parallelListingJobCount": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.partitionsFetched": {
            "count": 0
        }
    }, 
    "histograms": {
        "local-1581865176069.driver.CodeGenerator.compilationTime": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.generatedClassSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.generatedMethodSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.sourceCodeSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }
    }, 
    "meters": { }, 
    "timers": {
        "local-1581865176069.driver.DAGScheduler.messageProcessingTime": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0, 
            "m15_rate": 0, 
            "m1_rate": 0, 
            "m5_rate": 0, 
            "mean_rate": 0, 
            "duration_units": "milliseconds", 
            "rate_units": "calls/second"
        }
    }
}

 解析json獲取指標信息

    val diskSpaceUsed_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.disk.diskSpaceUsed_MB").getLong("value")//使用的磁盤空間
    val maxMem_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.maxMem_MB").getLong("value") //使用的最大內存
    val memUsed_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.memUsed_MB").getLong("value")//內存使用情況
    val remainingMem_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.remainingMem_MB").getLong("value") //閑置內存
    //#####################stage###################################
    val activeJobs = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.job.activeJobs").getLong("value")//當前正在運行的job
    val allJobs = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.job.allJobs").getLong("value")//總job數
    val failedStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.failedStages").getLong("value")//失敗的stage數量
    val runningStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.runningStages").getLong("value")//正在運行的stage
    val waitingStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.waitingStages").getLong("value")//等待運行的stage
    //#####################StreamingMetrics###################################
    val lastCompletedBatch_processingDelay = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingDelay").getLong("value")// 最近批次執行的延遲時間
    val lastCompletedBatch_processingEndTime = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingEndTime").getLong("value")//最近批次執行結束時間(毫秒為單位)
    val lastCompletedBatch_processingStartTime = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingStartTime").getLong("value")//最近批次開始執行時間
    //執行時間
    val lastCompletedBatch_processingTime = (lastCompletedBatch_processingEndTime - lastCompletedBatch_processingStartTime)
    val lastReceivedBatch_records = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastReceivedBatch_records").getLong("value")//最近批次接收的數量
    val runningBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.runningBatches").getLong("value")//正在運行的批次
    val totalCompletedBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalCompletedBatches").getLong("value")//完成的數據量
    val totalProcessedRecords = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalProcessedRecords").getLong("value")//總處理條數
    val totalReceivedRecords = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalReceivedRecords").getLong("value")//總接收條數
    val unprocessedBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.unprocessedBatches").getLong("value")//為處理的批次
    val waitingBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.waitingBatches").getLong("value")//處於等待狀態的批次
2.spark提交至yarn
   val sparkDriverHost = sc.getConf.get("spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES")
    //監控信息頁面路徑為集群路徑+/proxy/+應用id+/metrics/json
  val url = s"${sparkDriverHost}/metrics/json"

 3.作用

1.該job(endTime, applicationUniqueName, applicationId, sourceCount, costTime, countPerMillis)可以做表格,做鏈路統計

2.磁盤與內存信息做餅圖,用來對內存和磁盤的監控

3.程序task的運行情況做表格,用來對job的監控 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM