布隆過濾器


試想一下這樣的場景,當黑客故意訪問不存在的數據,導致程序不斷訪問DB數據庫的數據,數據庫會不會掛掉?答案是會的。所以為了避免這種情況發生,當黑客訪問不存在的緩存時能夠迅速返回避免緩存及DB掛掉,引出了今天講的布隆過濾器。

布隆過濾器(Bloom Filter)是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數。布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率和刪除困難。

優點:相比於其它的數據結構,布隆過濾器在空間和時間方面都有巨大的優勢。布隆過濾器存儲空間和插入/查詢時間都是常數。另外,散列函數相互之間沒有關系,方便由硬件並行實現。布隆過濾器不需要存儲元素本身,在某些對保密要求非常嚴格的場合有優勢

缺點:布隆過濾器的缺點和優點一樣明顯。誤算率是其中之一。隨着存入的元素數量增加,誤算率隨之增加。但是如果元素數量太少,則使用散列表足矣

 

 

Spring Boot 實現谷歌布隆過濾器——以會員抽獎為例

步驟一:引入依賴

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>21.0</version>
</dependency>

步驟二:將需要判斷數據是否存在的key值

@Service
public class BloomFilterService {

    @Resource
    private SysUserMapper sysUserMapper;

    private BloomFilter<Integer> bf;

    /***
     * PostConstruct 程序啟動時候加載此方法
     */
    @PostConstruct
    public void initBloomFilter() {
        SysUserExample sysUserExample = new SysUserExample();
        List<SysUser> sysUserList = sysUserMapper.selectByExample(sysUserExample);
        if(CollectionUtils.isEmpty(sysUserList)){
            return;
        }
        //創建布隆過濾器(默認3%誤差)
        bf = BloomFilter.create(Funnels.integerFunnel(),sysUserList.size());
        for (SysUser sysUser:sysUserList) {
            bf.put(sysUser.getId());
        }
    }

    /***
     * 判斷id可能存在於布隆過濾器里面
     * @param id
     * @return
     */
    public boolean userIdExists(int id){
        return bf.mightContain(id);
    }

}

步驟三:進行測試

@RestController
public class BloomFilterController {
    @Resource
    private BloomFilterService bloomFilterService;

    @RequestMapping("/bloom/idExists")
    public boolean ifExists(int id){
        return bloomFilterService.userIdExists(id);
    }
}

基於內存的 google 布隆過濾器的缺陷與思考

  • 重啟即失效
  • 本地內存無法用在分布式場景
  • 不支持大數據量存儲

為了解決這些問題,我們可以使用 Redis 布隆過濾器,它的好處有:

  • 可擴展性Bloom過濾器
  • 一旦Bloom過濾器達到容量,就會在其上創建一個新的過濾器
  • 不存在重啟即失效或者定時任務維護的成本
  • 基於goole實現的布隆過濾器需要啟動之后初始化布隆過濾器

它的缺點:需要網絡 IO,性能比基於內存的過濾器低

優先基於數據量進行考慮選擇哪個布隆過濾器

 

基於 Lua 腳本實現 Spring Boot 和布隆過濾器的整合

步驟一:編寫兩個 Lua 腳本

bloomFilterAdd.lua

local bloomName = KEYS[1]
local value = KEYS[2]

-- bloomFilter
local result_1 = redis.call('BF.ADD', bloomName, value)
return result_1

bloomFilterExist.lua

local bloomName = KEYS[1]
local value = KEYS[2]

-- bloomFilter
local result_1 = redis.call('BF.EXISTS', bloomName, value)
return result_1

步驟二:新建兩個方法

1)添加數據到指定名稱的布隆過濾器(bloomFilterAdd)

2)從指定名稱的布隆過濾器獲取 key 是否存在的腳本(bloomFilterExists)

@Service
public class RedisService {
    @Autowired
    private RedisTemplate redisTemplate;

    private static final String bloomFilterName = "isVipBloom";

    public Boolean bloomFilterAdd(int value){
        DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
        bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
        bloomAdd.setResultType(Boolean.class);
        List<Object> keyList= new ArrayList<>();
        keyList.add(bloomFilterName);
        keyList.add(value+"");
        Boolean result = (Boolean) redisTemplate.execute(bloomAdd,keyList);
        return result;
    }

    public Boolean bloomFilterExists(int value){
        DefaultRedisScript<Boolean> bloomExists= new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList= new ArrayList<>();
        keyList.add(bloomFilterName);
        keyList.add(value+"");
        Boolean result = (Boolean) redisTemplate.execute(bloomExists,keyList);
        return result;
    }
}

步驟三:進行測試

@RestController
public class BloomFilterController {
    @Resource
    private RedisService redisService;

    @RequestMapping("/bloom/redisIdExists")
    public boolean redisidExists(int id){
        return redisService.bloomFilterExists(id);
    }

    @RequestMapping("/bloom/redisIdAdd")
    public boolean redisidAdd(int id){
        return redisService.bloomFilterAdd(id);
    }
}

 

實現一個秒殺業務

 

 

1)利用 Redis 緩存 incr 攔截流量

首先通過數據控制模塊,提前將秒殺商品緩存到讀寫分離 Redis,並設置秒殺開始標記如下:

  • skuId_start: 0    開始標記,0表示秒殺還沒開始
  • skuId_count: 10000   表示總數
  • skuId_access: 12000  表示接受搶購數

秒殺開始前,服務集群讀取 skuId_start 為 0,直接返回未開始。之所以設置這個值而不是根據時間判斷是否開始,是因為服務時間可能不一致(相差幾百毫秒)這樣可能導致流量傾斜(其他服務沒開始,會將大量的流量堆積到開始的服務上)

數據控制模塊將 skuId_start 改為1,標志秒殺開始。

當接受下單數達到 skuId_count*1.2 后,繼續攔截所有請求。

2)利用 Redis 緩存加速庫存扣量

  • skuId_booked: 0 表示沒有搶購

3)將用戶訂單數據寫入mq

4)監聽mq入庫

代碼實現

@Service
public class SeckillService {

    private static final String secStartPrefix = "skuId_start_";
    private static final String secAccess = "skuId_access_";
    private static final String secCount = "skuId_count_";
    private static final String filterName = "skuId_bloomfilter_";
    private static final String bookedName = "skuId_booked_";


    @Resource
    private RedisService redisService;

    public String seckill(int uid, int skuId) {
        //流量攔截層
        //1、判斷秒殺是否開始   0_1554045087    開始標識_開始時間
        String isStart = (String) redisService.get(secStartPrefix + skuId);
        if (StringUtils.isBlank(isStart)) {
            return "還未開始";
        }
        if (isStart.contains("_")) {
            Integer isStartInt = Integer.parseInt(isStart.split("_")[0]);
            Integer startTime = Integer.parseInt(isStart.split("_")[1]);
            if (isStartInt == 0) {
                if (startTime > getNow()) {
                    return "還未開始";
                } else {
                    //代表秒殺已經開始
                    redisService.set(secStartPrefix + skuId, 1 + "");
                }
            } else {
                return "系統異常";
            }
        } else {
            if (Integer.parseInt(isStart) != 1) {
                return "系統異常";
            }
        }
        //2、流量攔截
        String skuIdAccessName = secAccess + skuId;
        Integer accessNumInt = 0;
        String accessNum = (String) redisService.get(skuIdAccessName);
        if (StringUtils.isNotBlank(accessNum)) {
            accessNumInt = Integer.parseInt(accessNum);
        }
        String skuIdCountName = secCount + skuId;
        Integer countNumInt = Integer.parseInt((String) redisService.get(skuIdCountName));
        if (countNumInt * 1.2 < accessNumInt) {
            return "搶購已經完成,歡迎下次參與";
        } else {
            redisService.incr(skuIdAccessName);
        }
        //信息校驗層
        if (redisService.bloomFilterExists(filterName, uid)) {
            return "您已經搶購過該商品,請勿重復下發!";
        } else {
            redisService.bloomFilterAdd(filterName, uid);
        }
        Boolean isSuccess = redisService.getAndIncrLua(bookedName + skuId);
        if (isSuccess) {
            return "恭喜您搶購成功!!!";
        } else {
            return "搶購結束,歡迎下次參與";
        }
    }

    private long getNow() {
        return System.currentTimeMillis() / 1000;
    }
}

RedisService

@Service
public class RedisService {

    @Autowired
    private RedisTemplate redisTemplate;

    private static double size = Math.pow(2, 32);


    /**
     * 寫入緩存
     *
     * @param key
     * @param offset 位 8Bit=1Byte
     * @return
     */
    public boolean setBit(String key, long offset, boolean isShow) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.setBit(key, offset, isShow);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 寫入緩存
     *
     * @param key
     * @param offset
     * @return
     */
    public boolean getBit(String key, long offset) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            result = operations.getBit(key, offset);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 寫入緩存
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            redisTemplate.opsForList();
            operations.set(key, value);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 寫入緩存
     *
     * @param key
     * @return
     */
    public Object get(final String key) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            return operations.get(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }


    /**
     * 寫入緩存
     *
     * @param key
     * @param value
     * @return
     */
    public boolean decr(final String key, int value) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.increment(key, -value);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 寫入緩存
     *
     * @param key
     * @return
     */
    public boolean incr(final String key) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.increment(key, 1);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 寫入緩存設置時效時間
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value, Long expireTime) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.set(key, value);
            redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 批量刪除對應的value
     *
     * @param keys
     */
    public void remove(final String... keys) {
        for (String key : keys) {
            remove(key);
        }
    }


    /**
     * 刪除對應的value
     *
     * @param key
     */
    public void remove(final String key) {
        if (exists(key)) {
            redisTemplate.delete(key);
        }
    }

    /**
     * 判斷緩存中是否有對應的value
     *
     * @param key
     * @return
     */
    public boolean exists(final String key) {
        return redisTemplate.hasKey(key);
    }

    /**
     * 讀取緩存
     *
     * @param key
     * @return
     */
    public Object genValue(final String key) {
        Object result = null;
        ValueOperations<String, String> operations = redisTemplate.opsForValue();
        result = operations.get(key);
        return result;
    }

    /**
     * 哈希 添加
     *
     * @param key
     * @param hashKey
     * @param value
     */
    public void hmSet(String key, Object hashKey, Object value) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        hash.put(key, hashKey, value);
    }

    /**
     * 哈希獲取數據
     *
     * @param key
     * @param hashKey
     * @return
     */
    public Object hmGet(String key, Object hashKey) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        return hash.get(key, hashKey);
    }

    /**
     * 列表添加
     *
     * @param k
     * @param v
     */
    public void lPush(String k, Object v) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        list.rightPush(k, v);
    }

    /**
     * 列表獲取
     *
     * @param k
     * @param l
     * @param l1
     * @return
     */
    public List<Object> lRange(String k, long l, long l1) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        return list.range(k, l, l1);
    }

    /**
     * 集合添加
     *
     * @param key
     * @param value
     */
    public void add(String key, Object value) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        set.add(key, value);
    }

    /**
     * 集合獲取
     *
     * @param key
     * @return
     */
    public Set<Object> setMembers(String key) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        return set.members(key);
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void zAdd(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.add(key, value, scoure);
    }

    /**
     * 有序集合獲取
     *
     * @param key
     * @param scoure
     * @param scoure1
     * @return
     */
    public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        redisTemplate.opsForValue();
        return zset.rangeByScore(key, scoure, scoure1);
    }


    //第一次加載的時候將數據加載到redis中
    public void saveDataToRedis(String name) {
        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        boolean availableUsers = setBit("availableUsers", indexLong, true);
    }

    //第一次加載的時候將數據加載到redis中
    public boolean getDataToRedis(String name) {

        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        return getBit("availableUsers", indexLong);
    }

    /**
     * 有序集合獲取排名
     *
     * @param key   集合名稱
     * @param value 值
     */
    public Long zRank(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.rank(key, value);
    }


    /**
     * 有序集合獲取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key, start, end);
        return ret;
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     */
    public Double zSetScore(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.score(key, value);
    }


    /**
     * 有序集合添加分數
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void incrementScore(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.incrementScore(key, value, scoure);
    }


    /**
     * 有序集合獲取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key, start, end);
        return ret;
    }

    /**
     * 有序集合獲取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
        return ret;
    }


    public Boolean bloomFilterAdd(String filterName, int value) {
        DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
        bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
        bloomAdd.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(filterName);
        keyList.add(value + "");
        Boolean result = (Boolean) redisTemplate.execute(bloomAdd, keyList);
        return result;
    }


    public Boolean bloomFilterExists(String filterName, int value) {
        DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(filterName);
        keyList.add(value + "");
        Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
        return result;
    }

    public Boolean getAndIncrLua(String key) {
        DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("secKillIncr.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(key);
        Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
        return result;
    }
}
RedisService 類似工具類

secKillIncr.lua

local lockKey = KEYS[1]

-- get info
local result_1 = redis.call('GET', lockKey)
if tonumber(result_1) <10000
then
local result_2= redis.call('INCR', lockKey)
return result_1
else
return result_1
end

測試:

@RestController
public class SeckillController {

    @Resource
    private SeckillService seckillService;

    @RequestMapping("/redis/seckill")
    public String secKill(int uid,int skuId){
         return seckillService.seckill(uid,skuId);
    }
}

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM