Overview
緩存是為達到系統快速響應的一項關鍵技術,Ceph 作為一個復雜的分布式存儲系統,有多種、多級緩存存在。緩存按照位置分為:客戶端緩存,服務端緩存,網絡中緩存
按照部署方式分為:單體緩存,緩存集群,分布式緩存
而Rados 網關緩存,也即RGW Cache 按照位置:作為Ceph client 可以歸為客戶端緩存,作為上層應用的服務端可以歸為服務端緩存。而按照部署方式則為分布式緩存,因為Ceph 集群通常會存在多個RGW 實例,分布式緩存會涉及到緩存同步等問題。
RGW Cache 將對象存儲的相關元數據存儲在內部緩存中,用於提升性能。
RGW Cache 執行路徑
前面已經提到,目前Ceph 中涉及RGW Cache 的配置參數有三個:
- rgw_cache_enabled: RGW Cache 開關,默認為true,即開啟。
- rgw_cache_expiry_interval: 緩存數據的過期時間,默認900秒。
- rgw_cache_lru_size: RGW 緩存entries的最大數量,當緩存滿后會根據LRU算法做緩存entries替換,entries size默認為10000。讀請求較多的場景,適當大的參數配置可以帶來更好的性能。
查看RGW cache 命中率:
[root@stor14 build]# bin/ceph daemon out/radosgw.8000.asok perf dump|grep cache
"cache_hit": 336,
"cache_miss": 135,
ceph.conf 中配置參數rgw_cache_enabled。
rgw_main.cc 中,獲得RGWRados *store:
int main() {
RGWRados *store =
RGWStoreManager::get_storage(g_ceph_context,
g_conf()->rgw_enable_gc_threads,
g_conf()->rgw_enable_lc_threads,
g_conf()->rgw_enable_bl_threads,
g_conf()->rgw_enable_quota_threads,
g_conf()->rgw_run_sync_thread,
g_conf().get_val<bool>("rgw_dynamic_resharding"),
g_conf()->rgw_cache_enabled); // 獲取rgw_cache_enabled 的配置,決定是否開啟緩存
}
調用路徑如下:
RGWRados *RGWStoreManager::RGWStoreManager::get_storage() ==>
RGWRados *RGWStoreManager::init_storage_provider() ==>
int RGWRados::initialize(CephContext *_cct) ==>
int RGWRados::initialize()
/**
* Initialize the RADOS instance and prepare to do other ops
* Returns 0 on success, -ERR# on failure.
*/
int RGWRados::initialize()
{
int ret;
inject_notify_timeout_probability =
cct->_conf.get_val<double>("rgw_inject_notify_timeout_probability");
max_notify_retries = cct->_conf.get_val<uint64_t>("rgw_max_notify_retries");
ret = init_svc(false); // 初始化包含svc_sysobj, sysobj_cache, svc_notify等的RGW Services
if (ret < 0) {
ldout(cct, 0) << "ERROR: failed to init services (ret=" << cpp_strerror(-ret) << ")" << dendl;
return ret;
}
host_id = svc.zone_utils->gen_host_id();
ret = init_rados(); //rados 相關上下文初始化
if (ret < 0)
return ret;
return init_complete(); // 初始化gc,lc,reshard 等線程
}
RGWRados *store的初始化中初始化RGW 服務:
int RGWRados::init_svc(bool raw) raw=false ==>
int RGWServices::init(CephContext *cct, bool have_cache) ==>
int RGWServices::do_init(CephContext *cct, bool have_cache, false) ==>
int RGWServices_Def::init(CephContext *cct, bool have_cache, false)
int RGWServices_Def::init(CephContext *cct,
bool have_cache,
bool raw)
{
finisher = std::make_unique<RGWSI_Finisher>(cct);
notify = std::make_unique<RGWSI_Notify>(cct);
rados = std::make_unique<RGWSI_RADOS>(cct);
zone = std::make_unique<RGWSI_Zone>(cct);
zone_utils = std::make_unique<RGWSI_ZoneUtils>(cct);
quota = std::make_unique<RGWSI_Quota>(cct);
sync_modules = std::make_unique<RGWSI_SyncModules>(cct);
sysobj = std::make_unique<RGWSI_SysObj>(cct);
sysobj_core = std::make_unique<RGWSI_SysObj_Core>(cct);
if (have_cache) {
sysobj_cache = std::make_unique<RGWSI_SysObj_Cache>(cct);
}
...
// 各類服務初始化
sysobj_core->core_init(rados.get(), zone.get());
if (have_cache) {
sysobj_cache->init(rados.get(), zone.get(), notify.get());
sysobj->init(rados.get(), sysobj_cache.get());
} else {
sysobj->init(rados.get(), sysobj_core.get());
}
...
//啟動notify 服務
if (!raw) {
r = notify->start();
if (r < 0) {
ldout(cct, 0) << "ERROR: failed to start notify service (" << cpp_strerror(-r) << dendl;
return r;
}
}
...
// 啟動sysobj_core 服務
r = sysobj_core->start();
if (r < 0) {
ldout(cct, 0) << "ERROR: failed to start sysobj_core service (" << cpp_strerror(-r) << dendl;
return r;
}
// 根據參數配置選擇是否啟動sysobj_cache 服務
if (have_cache) {
r = sysobj_cache->start();
if (r < 0) {
ldout(cct, 0) << "ERROR: failed to start sysobj_cache service (" << cpp_strerror(-r) << dendl;
return r;
}
}
// 啟動sysobj 服務
r = sysobj->start();
if (r < 0) {
ldout(cct, 0) << "ERROR: failed to start sysobj service (" << cpp_strerror(-r) << dendl;
return r;
}
/* cache or core services will be started by sysobj */
return 0;
}
CacheProovider RGWSI_SysObj_Cache繼承自RGWSI_SysObj_Core,而RGWSI_SysObj_Core 又是RGWServiceInstance的子類。
最終啟動RGWSI_SysObj_Cache 服務。
int RGWServiceInstance::start() ==>
virtual int RGWServiceInstance::do_start() ==>
int RGWSI_SysObj_Cache::do_start()
子類RGWSI_SysObj_Cache::do_start()中
int RGWSI_SysObj_Cache::do_start()
{
int r = RGWSI_SysObj_Core::do_start(); // 目前並沒做什么,return 0
if (r < 0) {
return r;
}
// 啟動notify 服務,為了后面的不同實例間的緩存分發
r = notify_svc->start();
if (r < 0) {
return r;
}
assert(notify_svc->is_started());
cb.reset(new RGWSI_SysObj_Cache_CB(this)); // 初始化回調對象
// 注冊包含回調函數的對象至notify_svc
// 通過notify_svc 的watch/notify 機制調用到已注冊的回調函數 int RGWSI_SysObj_Cache::watch_cb()
notify_svc->register_watch_cb(cb.get());
return 0;
}
watch_cb()的調用路徑是:
int RGWSI_Notify::watch_cb() ==>
int RGWSI_SysObj_Cache_CB::watch_cb() ==>
int RGWSI_SysObj_Cache::watch_cb()
RGW Cache 組織架構
一般的Cache 系統會有以下四個重要的概念:
- CachingProvider:定義了創建、配置、獲取、管理和控制一個或多個CacheManager。一個應用可以訪問多個CachingProvider。
- CacheManager:定義了創建、配置、獲取、管理和控制一個或多個唯一命名的Cache,這些Cache 存在於CacheManager的上下文中。一個CacheManager僅被一個CachingProvider擁有。
- Cache:是一個類似於Map 的數據結構並臨時存儲以key 為索引的值。一個Cache 僅被一個CacheManager 擁有。
- Entry:是一個存儲在Cache 中的key-value 對。
CachingProvider <>-----> CacheManager <>-----> Cache <>-----> Entry
RGW Cache 主要在以下源文件中實現:
- rgw_cache.h
- rgw_cache.cc
- svc_sys_obj_cache.h
- svc_sys_obj_cache.cc
類圖結構如下:
根據各部分起到的作用,其中
- ObjectCache 就是
CacheManager
的角色,管理一個Cache(Map)
(即std::unordered_map<string, ObjectCacheEntry> cache_map)。 - RGWSI_SysObj_Cache 相當於
CachingProvider
,管理一個CacheManager
(即ObjectCache cache)。 - ObjectCacheEntry 當然就是
Entry
的角色。
CachingProvider
RGWSI_SysObj_Cache:
class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core
{
//......
RGWSI_Notify *notify_svc{nullptr};
ObjectCache cache; //
std::shared_ptr<RGWSI_SysObj_Cache_CB> cb;
};
關於Entry
ObjectCacheEntry
struct ObjectCacheEntry {
ObjectCacheInfo info; //包含緩存對象data、metadata及xattr
std::list<string>::iterator lru_iter;
uint64_t lru_promotion_ts;
uint64_t gen; //entry 的版本,初始為0,每次更新后加一
std::vector<pair<RGWChainedCache *, string> > chained_entries; //
ObjectCacheEntry() : lru_promotion_ts(0), gen(0) {}
};
每個Entry 中包含對應Object 的緩存數據及相關信息,LRU信息,版本信息,chained_entries 等。
struct ObjectCacheInfo {
int status = 0;
uint32_t flags = 0; //?
uint64_t epoch = 0; //?
bufferlist data;
map<string, bufferlist> xattrs;
map<string, bufferlist> rm_xattrs; // 待移除xattrs
ObjectMetaInfo meta;
obj_version version = {};
ceph::coarse_mono_time time_added; //加入緩存的時間, 重新加入緩存的對象需要更新該時間
......
};
可以看到Cache 中包含了數據、元數據以及xattr等信息。
緩存管理
前面提到ObjectCache
充當了CacheManager
的角色,而RGWSI_SysObj_Cache
相當於CachingProvider
。
基於LRU 的淘汰算法
LRU 是一類常見的緩存淘汰算法,在Ehcache,Redis等很多系統中都有實現或改進實現。
LRU(Least recently used,最近最少使用)算法根據數據的歷訪問記錄來進行數據淘汰,其核心思想是:如果數據最近被訪問過,那么將來被訪問到的概率也很高。
- 而最近很少被使用的數據,很大概率下一次不再用到。
- 當緩存容量的滿時候,優先淘汰最近很少使用的數據。
LRU 操作總結:
- 新數據直接插入到列表頭部
- 緩存數據被命中,將數據移動到列表頭部
- 緩存已滿的時候,移除列表尾部數據。
CachingProvider
RGWSI_SysObj_Cache 作為CachingProvider,它負責對CacheManager ObjectCache的管理。
新的系統對象服務(system objects service)通過sysobj_core 用於核心的操作,這樣可以在system objects service 上擴展cache service,以實現object cache,其在PR 24014中引入。
RGWSI_SysObj_Core 是系統對象的基本抽象:屬性和方法,RGWSI_SysObj_Cache 繼承自RGWSI_SysObj_Core,實現cache service 的擴展。
class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core
{
//......
RGWSI_Notify *notify_svc{nullptr};
ObjectCache cache; //
std::shared_ptr<RGWSI_SysObj_Cache_CB> cb;
protected:
void init(RGWSI_RADOS *_rados_svc,
RGWSI_Zone *_zone_svc,
RGWSI_Notify *_notify_svc) {
core_init(_rados_svc, _zone_svc);
notify_svc = _notify_svc;
}
int do_start() override;
int raw_stat(const rgw_raw_obj& obj, uint64_t *psize, real_time *pmtime, uint64_t *epoch,
map<string, bufferlist> *attrs, bufferlist *first_chunk,
RGWObjVersionTracker *objv_tracker) override;
int read(); //讀操作
int get_attr(); // 獲取xattr
int set_attrs(); // 設置xattr
int remove(); //移除緩存
int write();
int write_data(); //
int distribute_cache(); // 分發緩存,因為通常會有多個RGW 實例,需要將緩存在多個RGW 實例間同步,保證數據一致性。
int watch_cb(); // watch 回調函數
void set_enabled(bool status); // watch/notify 開關,用於分布式多RGW 實例的緩存同步
public:
// chain cache
bool chain_cache_entry(std::initializer_list<rgw_cache_entry_info *> cache_info_entries,
RGWChainedCache::Entry *chained_entry);
......
};
移除緩存remove()
int RGWSI_SysObj_Cache::remove(RGWSysObjectCtxBase& obj_ctx,
RGWObjVersionTracker *objv_tracker,
const rgw_raw_obj& obj)
{
rgw_pool pool;
string oid;
normalize_pool_and_obj(obj.pool, obj.oid, pool, oid);
string name = normal_name(pool, oid);
// 根據前面構成的標准cache name,調用CacheManager的bool ObjectCache::remove(const string& name) 執行緩存刪除
cache.remove(name);
ObjectCacheInfo info;
// 向分布式系統中的其他RGW 實例分發緩存操作
int r = distribute_cache(name, obj, info, REMOVE_OBJ);
if (r < 0) {
ldout(cct, 0) << "ERROR: " << __func__ << "(): failed to distribute cache: r=" << r << dendl;
}
// 刪除sysobj_core 對象
return RGWSI_SysObj_Core::remove(obj_ctx, objv_tracker, obj);
}
具體的緩存刪除操作由CacheManager ObjectCache 執行
bool ObjectCache::remove(const string& name)
{
RWLock::WLocker l(lock); // 第一步:獲取寫鎖
if (!enabled) {
return false;
}
// 在cache map中找到指定緩存
auto iter = cache_map.find(name);
if (iter == cache_map.end())
return false;
ldout(cct, 10) << "removing " << name << " from cache" << dendl;
ObjectCacheEntry& entry = iter->second;
// 移除指定ObjectCacheEntry 關聯的所有 chained_entries
for (auto& kv : entry.chained_entries) {
kv.first->invalidate(kv.second);
}
remove_lru(name, iter->second.lru_iter); // 更新lru
cache_map.erase(iter); // cache map 中移除該對象緩存
return true;
}
以緩存中最常見、最重要的操作read()為例分析:
int RGWSI_SysObj_Cache::read(RGWSysObjectCtxBase& obj_ctx,
GetObjState& read_state,
RGWObjVersionTracker *objv_tracker,
const rgw_raw_obj& obj,
bufferlist *obl, off_t ofs, off_t end,
map<string, bufferlist> *attrs,
bool raw_attrs,
rgw_cache_entry_info *cache_info,
boost::optional<obj_version> refresh_version)
{
rgw_pool pool;
string oid;
// 若指定非開始處的offset 讀取,則直接讀取sysobj_core 對象
if (ofs != 0) {
return RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker,
obj, obl, ofs, end, attrs, raw_attrs,
cache_info, refresh_version);
}
normalize_pool_and_obj(obj.pool, obj.oid, pool, oid);
string name = normal_name(pool, oid);
ObjectCacheInfo info;
uint32_t flags = (end != 0 ? CACHE_FLAG_DATA : 0);
if (objv_tracker)
flags |= CACHE_FLAG_OBJV;
if (attrs)
flags |= CACHE_FLAG_XATTRS;
// 獲取指定name 的cache
if ((cache.get(name, info, flags, cache_info) == 0) &&
(!refresh_version || !info.version.compare(&(*refresh_version)))) {
if (info.status < 0)
return info.status;
bufferlist& bl = info.data;
bufferlist::iterator i = bl.begin();
obl->clear();
i.copy_all(*obl);
if (objv_tracker)
objv_tracker->read_version = info.version;
if (attrs) {
if (raw_attrs) {
*attrs = info.xattrs;
} else {
rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs);
}
}
return obl->length();
}
map<string, bufferlist> unfiltered_attrset;
int r = RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker,
obj, obl, ofs, end,
(attrs ? &unfiltered_attrset : nullptr),
true, /* cache unfiltered attrs */
cache_info,
refresh_version);
if (r < 0) {
// 未讀到該對象時,將該對象加入cache
if (r == -ENOENT) { // only update ENOENT, we'd rather retry other errors
info.status = r;
cache.put(name, info, cache_info);
}
return r;
}
if (obl->length() == end + 1) {
/* in this case, most likely object contains more data, we can't cache it */
flags &= ~CACHE_FLAG_DATA;
} else {
bufferptr p(r);
bufferlist& bl = info.data;
bl.clear();
bufferlist::iterator o = obl->begin();
o.copy_all(bl);
}
info.status = 0;
info.flags = flags;
if (objv_tracker) {
info.version = objv_tracker->read_version;
}
if (attrs) {
info.xattrs = std::move(unfiltered_attrset);
if (raw_attrs) {
*attrs = info.xattrs;
} else {
rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs);
}
}
cache.put(name, info, cache_info);
return r;
}
CacheManager
CacheManager ObjectCache 負責具體Cache Entries的管理:緩存獲取,緩存移除,LRU 管理
class ObjectCache {
std::unordered_map<string, ObjectCacheEntry> cache_map;
std::list<string> lru; // LRU 列表
unsigned long lru_size; // LRU 表的大小
unsigned long lru_counter; // 當前LRU 數
unsigned long lru_window; // rgw_cache_lru_size 的一半大小
RWLock lock;
CephContext *cct;
vector<RGWChainedCache *> chained_cache;
bool enabled; // watch/notify 的開關
ceph::timespan expiry; // 緩存過期時間大小
};
緩存獲取
int ObjectCache::get(const string& name, ObjectCacheInfo& info, uint32_t mask, rgw_cache_entry_info *cache_info)
{
RWLock::RLocker l(lock); // 第一步,先獲取讀鎖
if (!enabled) {
return -ENOENT;
}
// 獲取指定緩存
auto iter = cache_map.find(name);
if (iter == cache_map.end()) {
ldout(cct, 10) << "cache get: name=" << name << " : miss" << dendl;
if (perfcounter)
perfcounter->inc(l_rgw_cache_miss);
return -ENOENT;
}
// 緩存是否已經過期
// 過期緩存需要從cache map中移除,從LRU 表中移除
if (expiry.count() &&
(ceph::coarse_mono_clock::now() - iter->second.info.time_added) > expiry) {
ldout(cct, 10) << "cache get: name=" << name << " : expiry miss" << dendl;
lock.unlock();
lock.get_write(); // 由讀鎖轉為寫鎖
// check that wasn't already removed by other thread
iter = cache_map.find(name);
if (iter != cache_map.end()) {
for (auto &kv : iter->second.chained_entries)
kv.first->invalidate(kv.second);
remove_lru(name, iter->second.lru_iter);
cache_map.erase(iter);
}
if(perfcounter)
perfcounter->inc(l_rgw_cache_miss);
return -ENOENT;
}
ObjectCacheEntry *entry = &iter->second;
// 當前entry 計數距離總計數lru_counter超過LRU 窗口大小,即當前entry 已經落在LRU 表后半段,這時才去更新entry LRU表
// [lru window](https://github.com/ceph/ceph/commit/a84cf15f64211c00bc6c95687ff4509d16b1f909)
if (lru_counter - entry->lru_promotion_ts > lru_window) {
ldout(cct, 20) << "cache get: touching lru, lru_counter=" << lru_counter
<< " promotion_ts=" << entry->lru_promotion_ts << dendl;
lock.unlock();
lock.get_write(); /* promote lock to writer */
/* need to redo this because entry might have dropped off the cache */
iter = cache_map.find(name);
if (iter == cache_map.end()) {
ldout(cct, 10) << "lost race! cache get: name=" << name << " : miss" << dendl;
if(perfcounter) perfcounter->inc(l_rgw_cache_miss);
return -ENOENT;
}
entry = &iter->second;
/* check again, we might have lost a race here */
if (lru_counter - entry->lru_promotion_ts > lru_window) {
touch_lru(name, *entry, iter->second.lru_iter); // 更新緩存LRU
}
}
ObjectCacheInfo& src = iter->second.info;
if ((src.flags & mask) != mask) {
ldout(cct, 10) << "cache get: name=" << name << " : type miss (requested=0x"
<< std::hex << mask << ", cached=0x" << src.flags
<< std::dec << ")" << dendl;
if(perfcounter) perfcounter->inc(l_rgw_cache_miss);
return -ENOENT;
}
ldout(cct, 10) << "cache get: name=" << name << " : hit (requested=0x"
<< std::hex << mask << ", cached=0x" << src.flags
<< std::dec << ")" << dendl;
info = src;
if (cache_info) {
cache_info->cache_locator = name;
cache_info->gen = entry->gen;
}
if(perfcounter) perfcounter->inc(l_rgw_cache_hit);
return 0;
}
緩存添加
void ObjectCache::put(const string& name, ObjectCacheInfo& info, rgw_cache_entry_info *cache_info)
{
RWLock::WLocker l(lock);
if (!enabled) {
return;
}
ldout(cct, 10) << "cache put: name=" << name << " info.flags=0x"
<< std::hex << info.flags << std::dec << dendl;
auto [iter, inserted] = cache_map.emplace(name, ObjectCacheEntry{});
ObjectCacheEntry& entry = iter->second;
entry.info.time_added = ceph::coarse_mono_clock::now();
if (inserted) {
entry.lru_iter = lru.end();
}
ObjectCacheInfo& target = entry.info;
invalidate_lru(entry);
entry.chained_entries.clear();
entry.gen++;
touch_lru(name, entry, entry.lru_iter);
target.status = info.status;
if (info.status < 0) {
target.flags = 0;
target.xattrs.clear();
target.data.clear();
return;
}
if (cache_info) {
cache_info->cache_locator = name;
cache_info->gen = entry.gen;
}
target.flags |= info.flags;
if (info.flags & CACHE_FLAG_META)
target.meta = info.meta;
else if (!(info.flags & CACHE_FLAG_MODIFY_XATTRS))
target.flags &= ~CACHE_FLAG_META; // non-meta change should reset meta
if (info.flags & CACHE_FLAG_XATTRS) {
target.xattrs = info.xattrs;
map<string, bufferlist>::iterator iter;
for (iter = target.xattrs.begin(); iter != target.xattrs.end(); ++iter) {
ldout(cct, 10) << "updating xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl;
}
} else if (info.flags & CACHE_FLAG_MODIFY_XATTRS) {
map<string, bufferlist>::iterator iter;
for (iter = info.rm_xattrs.begin(); iter != info.rm_xattrs.end(); ++iter) {
ldout(cct, 10) << "removing xattr: name=" << iter->first << dendl;
target.xattrs.erase(iter->first);
}
for (iter = info.xattrs.begin(); iter != info.xattrs.end(); ++iter) {
ldout(cct, 10) << "appending xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl;
target.xattrs[iter->first] = iter->second;
}
}
if (info.flags & CACHE_FLAG_DATA)
target.data = info.data;
if (info.flags & CACHE_FLAG_OBJV)
target.version = info.version;
}
緩存移除
bool ObjectCache::remove(const string& name)
{
RWLock::WLocker l(lock); // 第一步,獲取寫鎖
if (!enabled) {
return false;
}
auto iter = cache_map.find(name);
if (iter == cache_map.end())
return false;
ldout(cct, 10) << "removing " << name << " from cache" << dendl;
ObjectCacheEntry& entry = iter->second;
// 移除跟cache entry 關聯的所有chained entries
for (auto& kv : entry.chained_entries) {
kv.first->invalidate(kv.second);
}
// 移除LRU 表中的cache object對應項
remove_lru(name, iter->second.lru_iter);
cache_map.erase(iter);
return true;
}
LRU 更新
LRU 表是一個雙向列表 std:list<>,可支持表頭插入、表尾插入。RGW Cache 實現在LRU 表頭
std::list<string> lru;
LRU 移除
void ObjectCache::remove_lru(const string& name,
std::list<string>::iterator& lru_iter)
{
if (lru_iter == lru.end())//確定是否在LRU 表中
return;
lru.erase(lru_iter);// 移除該項
lru_size--; // LRU 當前size 減一
lru_iter = lru.end(); //將當前iter 置為無效
}
touch_lru 負責更新緩存項至LRU 表:
void ObjectCache::touch_lru(const string& name, ObjectCacheEntry& entry,
std::list<string>::iterator& lru_iter)
{
// 當前lru size 超過預設值rgw_cache_lru_size,需要先刪除LRU 頭
while (lru_size > (size_t)cct->_conf->rgw_cache_lru_size) {
auto iter = lru.begin(); // LRU 表尾項
if ((*iter).compare(name) == 0) { // 如果當前對象是LRU 是LRU 表尾項,不用立馬顯式刪除,LRU 會根據rgw_cache_lru_size 自動不包含該項
/*
* if the entry we're touching happens to be at the lru end, don't remove it,
* lru shrinking can wait for next time
*/
break;
}
// 移除LRU 表尾項對應的對象緩存
auto map_iter = cache_map.find(*iter);
ldout(cct, 10) << "removing entry: name=" << *iter << " from cache LRU" << dendl;
if (map_iter != cache_map.end()) {
ObjectCacheEntry& entry = map_iter->second;
invalidate_lru(entry);
cache_map.erase(map_iter);
}
// 刪除LRU 表尾項,並將當前LRU size 減一
lru.pop_front();
lru_size--;
}
if (lru_iter == lru.end()) { // lru_iter不在LRU 表中:插入當前項至LRU 表頭(list 尾)
lru.push_back(name);
lru_size++;
lru_iter--;
ldout(cct, 10) << "adding " << name << " to cache LRU end" << dendl;
} else { // lru_iter在LRU 表中:移動至當前項至LRU 表頭(list 尾)
ldout(cct, 10) << "moving " << name << " to cache LRU end" << dendl;
lru.erase(lru_iter);
lru.push_back(name);
lru_iter = lru.end();
--lru_iter;
}
lru_counter++;
entry.lru_promotion_ts = lru_counter; //
}
緩存一致性
RGW Cache 屬於分布式緩存,通常會有多個RGW 實例,緩存需要在各個RGW 實例間分發,且需要保證緩存一致性。
RGW Cache的調用路徑中已經給出,CachingProvider RGWSI_SysObj_Cache 會在服務啟動do_start() 中start notify_svc,並注冊watch_cb 函數。
notify_svc 這個服務的作用就是提供一種watch/notify 機制,以確保緩存一致性。
watch/notify 機制由librados提供。其中,notify rados object 存在default.rgw.control 池中。
[root@stor14 build]# bin/rados ls -p default.rgw.control
notify.1
notify.6
notify.3
notify.7
notify.2
notify.4
notify.5
notify.0
[root@stor14 build]# bin/rados -p default.rgw.control stat notify.1
default.rgw.control/notify.1 mtime 2020-01-10 18:59:13.000000, size 0
[root@stor14 build]# bin/rados -p default.rgw.control stat notify.7
default.rgw.control/notify.7 mtime 2020-01-10 18:59:14.000000, size 0
notify_svc 服務的啟動路徑跟cache_svc 類似:
int RGWServiceInstance::start() ==>
virtual int RGWServiceInstance::do_start() ==>
int RGWSI_Notify::do_start()
do_start() 會初始化watch:
int RGWSI_Notify::init_watch()
{
num_watchers = cct->_conf->rgw_num_control_oids; // 有參數rgw_num_control_oids 配置,默認8個 watcher
bool compat_oid = (num_watchers == 0);
if (num_watchers <= 0)
num_watchers = 1;
watchers = new RGWWatcher *[num_watchers];
......
}
在cache op 之后,會執行cache 分發操作distribute_cache():
int RGWSI_SysObj_Cache::distribute_cache(const string& normal_name, const rgw_raw_obj& obj, ObjectCacheInfo& obj_info, int op)
{
RGWCacheNotifyInfo info;
info.op = op;
info.obj_info = obj_info;
info.obj = obj;
bufferlist bl;
encode(info, bl);
return notify_svc->distribute(normal_name, bl); // 利用notify_svc 分發
}
分發過程:
int RGWSI_Notify::distribute(const string& key, bufferlist& bl)
{
// 選擇一個notify obj
RGWSI_RADOS::Obj notify_obj = pick_control_obj(key);
ldout(cct, 10) << "distributing notification oid=" << notify_obj.get_ref().obj
<< " bl.length()=" << bl.length() << dendl;
// 執行分發
return robust_notify(notify_obj, bl);
}
分發細節會在RGW Services -- Notify Service 中說明。
另外,在notify_svc 服務的watcher 的handle_notify()中調用已注冊的回調函數。
watcher 收到notify的更新通知后,會更新本地緩存。
void RGWWatcher::handle_notify()
{
......
// 調用cache_svc 服務注冊的回調函數
svc->watch_cb(notify_id, cookie, notifier_id, bl);
// 向通知者發送確認消息
bufferlist reply_bl; // empty reply payload
obj.notify_ack(notify_id, cookie, reply_bl);
......
}
回調函數中根據操作類型,利用CacheManager 完成cache 更新或移除:
int RGWSI_SysObj_Cache::watch_cb(uint64_t notify_id,
uint64_t cookie,
uint64_t notifier_id,
bufferlist& bl)
{
RGWCacheNotifyInfo info; //cache notify 信息,包含:操作、rgw raw object、obj cache info、offset等
try {
auto iter = bl.cbegin();
decode(info, iter);
} catch (buffer::end_of_buffer& err) {
ldout(cct, 0) << "ERROR: got bad notification" << dendl;
return -EIO;
} catch (buffer::error& err) {
ldout(cct, 0) << "ERROR: buffer::error" << dendl;
return -EIO;
}
rgw_pool pool;
string oid;
normalize_pool_and_obj(info.obj.pool, info.obj.oid, pool, oid);
string name = normal_name(pool, oid);
switch (info.op) {
case UPDATE_OBJ: //利用CacheManager 更新緩存
cache.put(name, info.obj_info, NULL);
break;
case REMOVE_OBJ: //利用CacheManager 移除緩存
cache.remove(name);
break;
default:
ldout(cct, 0) << "WARNING: got unknown notification op: " << info.op << dendl;
return -EINVAL;
}
return 0;
}
Chained cache
Chained cache 讓user info,bucket info 可以通過鏈接原生緩存,得以開啟緩存。
Basically chains bucket info and user info caches to the raw metadata object cache.
binfo_cache = new RGWChainedCacheImpl<bucket_info_entry>;
static RGWChainedCacheImpl<user_info_entry> uinfo_cache;
以user cache 為例,在開啟RGW Cache后,優先從緩存中獲取:
void rgw_user_init(RGWRados *store)
{
uinfo_cache.init(store->svc.cache);
user_meta_handler = new RGWUserMetadataHandler;
store->meta_mgr->register_handler(user_meta_handler);
}
int rgw_get_user_info_from_index(RGWRados * const store,
const string& key,
const rgw_pool& pool,
RGWUserInfo& info,
RGWObjVersionTracker * const objv_tracker,
real_time * const pmtime)
{
// 首選嘗試獲取緩存
if (auto e = uinfo_cache.find(key)) {
info = e->info;
if (objv_tracker)
*objv_tracker = e->objv_tracker;
if (pmtime)
*pmtime = e->mtime;
return 0;
}
......
// 未能從緩存中獲取,直接從RADOS 集群中獲取
// 獲取到之后,更新uinfo 緩存
uinfo_cache.put(store->svc.cache, key, &e, { &cache_info });
.......
class RGWChainedCache {
public:
......
struct Entry {
RGWChainedCache *cache; // 關聯cache
const string& key; // email/swift_name/access_key/bucket name
void *data; // 指向bucket_info_entry或user_info_entry
Entry(RGWChainedCache *_c, const string& _k, void *_d) : cache(_c), key(_k), data(_d) {}
};
};
通過sysobj_cache_svc 服務提供chain cache:
將chain_entry添加到chained cache,並和cache_info_entries 指向的ObjectCacheEntry相關聯。
bool RGWChainedCache::put(RGWSI_SysObj_Cache *svc, const string& key, T *entry,
std::initializer_list<rgw_cache_entry_info *> cache_info_entries) {
if (!svc) {
return false;
}
Entry chain_entry(this, key, entry);
/* we need the svc cache to call us under its lock to maintain lock ordering */
return svc->chain_cache_entry(cache_info_entries, &chain_entry);
}
bool ObjectCache::chain_cache_entry(std::initializer_list<rgw_cache_entry_info*> cache_info_entries, RGWChainedCache::Entry *chained_entry)
{
// 確認所有有效ObjectCacheEntry
......
// 將待添加entry添加到對應chain cache中
chained_entry->cache->chain_cb(chained_entry->key, chained_entry->data);
// 將chained entry關聯到指定的所有有效的ObjectCacheEntry
for (auto entry : entries) {
entry->chained_entries.push_back(make_pair(chained_entry->cache,
chained_entry->key));
}
......
}
chained cache 依賴於ObjectCache,
更新ObjectCache的成員 vector<RGWChainedCache *> chained_cache:
void ObjectCache::chain_cache(RGWChainedCache *cache);
void ObjectCache::unchain_cache(RGWChainedCache *cache);
RGW Cache 優化方向
前面的測試系統的cache 命中率:"cache_hit": 336,"cache_miss": 135, 336/(336+135)*100% = 71%
緩存系統適合讀多寫少的場景。如何在這種場景下,提高RGW Cache 的命中率,以下方向可以考慮:
- 將緩存粒度設計的更細?
- 增大緩存容量(這個已經可以根據實際配置)
References
- 《深入分布式緩存》於君澤、曹洪偉、邱碩 機械工業出版社
- https://docs.ceph.com/docs/master/radosgw/config-ref/
- https://my.oschina.net/linuxhunter/blog/662801
- rgw: initial RGWRados refactoring work #24014
- rgw: update ObjectCacheInfo::time_added on overwrite
- rgw: add support for new watch/notify functionality
- rgw: an infrastructure for hooking into the raw cache