十分鍾掌握pyecharts十類頂級圖(親測 餅圖 ok)


使用pip install pyecharts 安裝,安裝后的版本為 v1.6

pyecharts幾行代碼就能繪制出有特色的的圖形,繪圖API鏈式調用,使用方便。

1 儀表盤

from pyecharts import charts

# 儀表盤
gauge = charts.Gauge()
gauge.add('Python小例子', [('Python機器學習', 30), ('Python基礎', 70.),
('Python正則', 90)])
gauge.render(path="./data/儀表盤.html")
print('ok')

儀表盤中共展示三項,每項的比例為30%,70%,90%,如下圖默認名稱顯示第一項:Python機器學習,完成比例為30%

 

 

2 漏斗圖

from pyecharts import options as opts
from pyecharts.charts import Funnel, Page
from random import randint

def funnel_base() -> Funnel:
c = (
Funnel()
.add("豪車", [list(z) for z in zip(['寶馬', '法拉利', '奔馳', '奧迪', '大眾', '豐田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="豪車漏斗圖"))
)
return c

funnel_base().render('./img/car_funnel.html')
print('ok')

以7種車型及某個屬性值繪制的漏斗圖,屬性值大越靠近漏斗的大端。

 

 

 

3 日歷圖

import datetime
import random

from pyecharts import options as opts
from pyecharts.charts import Calendar


def calendar_interval_1() -> Calendar:
begin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 27)
data = [
[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
for i in range(0, (end - begin).days + 1, 2) # 隔天統計
]

calendar = (
Calendar(init_opts=opts.InitOpts(width="1200px")).add(
"", data, calendar_opts=opts.CalendarOpts(range_="2019"))
.set_global_opts(
title_opts=opts.TitleOpts(title="Calendar-2019年步數統計"),
visualmap_opts=opts.VisualMapOpts(
max_=25000,
min_=1000,
orient="horizontal",
is_piecewise=True,
pos_top="230px",
pos_left="100px",
),
)
)
return calendar


calendar_interval_1().render('./img/calendar.html')
print('ok')

繪制2019年1月1日到12月27日的步行數,官方給出的圖形寬度900px不夠,只能顯示到9月份,本例使用opts.InitOpts(width="1200px")做出微調,並且visualmap顯示所有步數,每隔一天顯示一次:

 

 

 

4 關系圖(graph)

import json
import os

from pyecharts import options as opts
from pyecharts.charts import Graph, Page


def graph_base() -> Graph:
nodes = [
{"name": "cus1", "symbolSize": 10},
{"name": "cus2", "symbolSize": 30},
{"name": "cus3", "symbolSize": 20}
]
links = []
for i in nodes:
if i.get('name') == 'cus1':
continue
for j in nodes:
if j.get('name') == 'cus1':
continue
links.append({"source": i.get("name"), "target": j.get("name")})
c = (
Graph()
.add("", nodes, links, repulsion=8000)
.set_global_opts(title_opts=opts.TitleOpts(title="customer-influence"))
)
return c

構建圖,其中客戶點1與其他兩個客戶都沒有關系(link),也就是不存在有效邊:

 

 

 

5 水球圖

from pyecharts import options as opts
from pyecharts.charts import Liquid, Page
from pyecharts.globals import SymbolType


def liquid() -> Liquid:
c = (
Liquid()
.add("lq", [0.67, 0.30, 0.15])
.set_global_opts(title_opts=opts.TitleOpts(title="Liquid"))
)
return c


liquid().render('./img/liquid.html')

水球圖的取值[0.67, 0.30, 0.15]表示下圖中的三個波浪線,一般代表三個百分比:

 

 

6 餅圖

from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint

def pie_base() -> Pie:
c = (
Pie()
.add("", [list(z) for z in zip(['寶馬', '法拉利', '奔馳', '奧迪', '大眾', '豐田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
return c

pie_base().render('./img/pie_pyecharts.html')

 

 

7 極坐標

import random
from pyecharts import options as opts
from pyecharts.charts import Page, Polar

def polar_scatter0() -> Polar:
data = [(alpha, random.randint(1, 100)) for alpha in range(101)] # r = random.randint(1, 100)
print(data)
c = (
Polar()
.add("", data, type_="bar", label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Polar"))
)
return c


polar_scatter0().render('./img/polar.html')

極坐標表示為(夾角,半徑),如(6,94)表示"夾角"為6,半徑94的點:

 

 

8 詞雲圖

from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType


words = [
("Python", 100),
("C++", 80),
("Java", 95),
("R", 50),
("JavaScript", 79),
("C", 65)
]


def wordcloud() -> WordCloud:
c = (
WordCloud()
# word_size_range: 單詞字體大小范圍
.add("", words, word_size_range=[20, 100], shape='cardioid')
.set_global_opts(title_opts=opts.TitleOpts(title="WordCloud"))
)
return c


wordcloud().render('./img/wordcloud.html')

("C",65)表示在本次統計中C語言出現65次

 

9 熱力圖

import random
from pyecharts import options as opts
from pyecharts.charts import HeatMap


def heatmap_car() -> HeatMap:
x = ['寶馬', '法拉利', '奔馳', '奧迪', '大眾', '豐田', '特斯拉']
y = ['中國','日本','南非','澳大利亞','阿根廷','阿爾及利亞','法國','意大利','加拿大']
value = [[i, j, random.randint(0, 100)]
for i in range(len(x)) for j in range(len(y))]
c = (
HeatMap()
.add_xaxis(x)
.add_yaxis("銷量", y, value)
.set_global_opts(
title_opts=opts.TitleOpts(title="HeatMap"),
visualmap_opts=opts.VisualMapOpts(),
)
)
return c

heatmap_car().render('./img/heatmap_pyecharts.html')


 

 

10 地圖

 

結語

pyecharts有30多種不同的可視化圖形,開源免費且文檔案例詳細,可作為數據可視化首選!

 

 

中文文檔:

https://pyecharts.org/#/zh-cn/intro

源碼:

https://github.com/pyecharts/pyecharts

來源: https://mp.weixin.qq.com/s/ZJWQsNp58ftp-1YFvtts8g


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM