ThreadLocal本地線程深入理解及線程間請求參數token傳遞


結論:內部通過,操作當前線程的成員變量threadLocalMap,即Thread.currentThread.threadLocalMap,Map中key為當前線程的threadLocal對象(即調用add()方法的實例對象this,本文中為threadLocalUser),value為存入對象,當存取時內部自動傳入當前線程key,所以只能取到當前線程的綁定變量,從而實現線程級隔離。當線程不同時操作的thread也不同,Map當然也不同,map中的key和value也就不同了。

打個不太恰當的比喻,多個It男(Thread),每個人一個背包(threadLocalMap),包里放入自己經常要用的東西比如筆記本(key標簽為"筆忘本",value"聯想電腦",沒有的話,第一次參加工作createMap要用的時候也會買了放進去),當多個人同時都接到接到任務“拿出筆記本”(並發http請求),自己在任何地方都可以把“筆忘本”拿出來用,但每個人都不會拿錯。

 注:map的key不是線程id或者name,而是當前線程下的ThreadLocal實例對象,之前所以這么設計,保證當前線程可以有多個ThreadLocal對象,如果key為當前線程,那就限制了當前線程只能存儲一個對象

ThreadLocal<Student> threadLocalStudent=new ThreadLocal();

ThreadLocal<UserInfo> threadLocalUserInfo=new new ThreadLocal();

 

 

為方便分析本文以一個ThreadLocal對象來舉例,並且為方便線程內跨類跨包隨取隨用,用自定義類MyThreadLocal來將ThreadLocal成員封裝為靜態對象,並為之提供訪問方法set ,get

1.作用:

用於存儲線程中共享變量,隨用隨取,如操作員信息,一處存入處處可用

2.原理如下

 

 

 存:Class加載初始化時將threadlocal變量加入方法區(線程共享),存的時候直接MyThreadLocal.threadLocal.set(new UserInfo("1001","zhangsan"));內部threadlocal通過當前線程T找到線程的變量threadLocalMap,然后put(key(線程的ThreadLocal實例對象),value(UserInfo對象))存入Map

取:UserInfo user=MyThreadLocal.threadLocal.get();內部也是通過當前線程綁定的threadLocalMap中,get(key(當前線程的ThreadLocal實例對象)),所以只要線程相同且ThreadLocal實例ID相同,取到的值就相同,反之則不同,從而實現不同線程間隔離,同一線程中共享。

3.跟蹤調試

自定義類MyThreadLocal中,threadLocal在MyThreadLocal初始化時就有值,且只初始化一次,與類相關與實例對象無關,所以任何線程進來都是一個值

 

 

在ThreadLocal的set方法源碼中打斷點,跟蹤Thread t的結構,t 中的成員變量threadLocals即為存儲Map,map中有table(Entry數組,元素Entry.key 為線程的ThreadLocal實例對象的弱引用referent,Entry.value為存入對象),第63個元素的value就是存入對象,referent為當前線程的引用

注意:線程Id不同時,本地線程中的變量為null,必須自己用自己取

 

 referent的類型為ThreadLocal

 

第63元素的referent為下圖

 

 

 

 

 

 

 

 

 

 

 4.多線程傳傳參數

先將本地變量取出,再在新線程中傳入,如果要傳token,只需在userInfo中添加一個字段,請求進入時在controller或者攔截器中MyThreadLocal.add(userInfo)即可后續使用。

          //先取出當前值  
      UserInfo userInfo= MyThreadLocal.getUserInfo();
      
//推薦使用線程池創建新線程
new Thread(()->{ log.info("before setting,"+JSONObject.toJSONString(MyThreadLocal.getUserInfo()));//返回NULL MyThreadLocal.add(sysOperDTO); log.info("after setting,=="+JSONObject.toJSONString(MyThreadLocal.getUserInfo()));//返回對象 }).start();
      

UserInfo類

@Data
public class UserInfo {
    private String threadName;
    private String threadId;

}

MyThreadLocal

public class MyThreadLocal {

    private MyThreadLocal() {
    }

    private static final ThreadLocal<UserInfo> threadLocalUser = new ThreadLocal<>();

    public static void add(UserInfo userInfo) {
        userInfo.setThreadName(Thread.currentThread().getName());
        userInfo.setThreadId("threadId:"+String.valueOf(Thread.currentThread().getId())+" threadLocalUser.hashCode=="+ threadLocalUser.hashCode());
        threadLocalUser.set(userInfo);
    }

    public static UserInfo getUserInfo() {
        return threadLocalUser.get();
    }

    public static void remove() {
        threadLocalUser.remove();
    }
}

 

5.Map實際結構,是ThreadLocal的靜態內部類

   /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: {@code log2(n)} cells are scanned,
         * unless a stale entry is found, in which case
         * {@code log2(table.length)-1} additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }

 

 

附關聯知識:
ThreadLocal內存泄漏問題:https://www.cnblogs.com/xzwblog/p/7227509.html
volatile的深入理解:https://www.jianshu.com/p/4901b2fdfce1
線程池的詳解:https://www.cnblogs.com/zzuli/p/9386463.html
對象的強引用弱引用:https://www.cnblogs.com/yanggb/p/10386175.html
關閉線程三種方法:https://www.cnblogs.com/liyutian/p/10196044.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM