5G NR系列(二)物理下行共享信道(PDSCH)加擾和調制


一、加擾

最多可以傳輸兩個碼字 \(q \in\{0,1\}\) 。在單碼字傳輸的情況下,\(q=0\)
對於每個碼字 \(q\) ,UE應假設比特塊 \(b^{(q)}(0), \ldots, b^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right)\) 在調制之前被加擾,\(M_{\mathrm{bit}}^{(q)}\) 是在物理信道中傳輸的碼字 \(q\) 的比特數量,根據如下公式產生一個加擾比特塊 \(\tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right)\)

\[\widetilde{b}^{(q)}(i)=\left(b^{(q)}(i)+c^{(q)}(i)\right) \bmod 2 \]

式中,加擾序列 \(c^{(q)}(i)\) 由5.2.1節給出。加擾序列生成器應按照如下公式初始化:

\[c_{\text {init }}=n_{\mathrm{RNTI}} \cdot 2^{15}+q \cdot 2^{14}+n_{\mathrm{ID}} \]

式中,

  • \(n_{\mathrm{ID}} \in\{0,1, \ldots, 1023\}\) 等於高層參數dataScramblingIdentityPDSCH(如果配置),並且RNTI等於C-RNTI、MCS-C-RNTI或CS-RNTI,並且在公共搜索空間中不使用DCI格式1_0調度傳輸,
  • 否則,\(n_{\mathrm{ID}}=N_{\mathrm{ID}}^{\mathrm{cell}}\)

二、調制

對於每個碼字 \(q\) ,UE應假設加擾比特塊 \(\tilde{b}^{(q)}(0), \ldots, \tilde{b}^{(q)}\left(M_{\mathrm{bit}}^{(q)}-1\right)\) 使用表2-1中的一種調制格式,按5.1節所述進行調制,產生一個復數值調制符號塊 \(d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right)\)

表2-1:支持的調制格式
調制格式 階數
QPSK 2
16QAM 4
64QAM 6
256QAM 8

三、層映射

UE應假設根據表3-1將要發送的每個碼字的復數值調制符號映射到一個或多個層上。碼字 \(q\) 的復數值調制符號 \(d^{(q)}(0), \ldots, d^{(q)}\left(M_{\mathrm{symb}}^{(q)}-1\right)\) 應映射到層 \(x(i)=\left[\begin{array}{lll}{x^{(0)}(i)} & {\dots} & {x^{(\nu-1)}(i)}\end{array}\right]^{T}\) 上,\(i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1\),式中 \(v\) 是層數,\(M_{\mathrm{symb}}^{\mathrm{layer}}\) 是每層調制符號數。

表3-1:空分復用的碼字-層映射
層數 碼字數 碼字-層映射$$i=0,1, \ldots, M_{\mathrm{symb}}^{\mathrm{layer}}-1$$
1 1 \(x^{(0)}(i)=d^{(0)}(i)\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)}\)
2 1 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2\)
3 1 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3\)
4 1 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4\)
5 2 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(2 i)} \\ {x^{(1)}(i)=d^{(0)}(2 i+1)} \\ {x^{(2)}(i)=d^{(1)}(3 i)} \\ {x^{(3)}(i)=d^{(1)}(3 i+1)} \\ {x^{(4)}(i)=d^{(1)}(3 i+2)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 2=M_{\mathrm{symb}}^{(1)} / 3\)
6 2 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(3 i)} \\ {x^{(4)}(i)=d^{(1)}(3 i+1)} \\ {x^{(5)}(i)=d^{(1)}(3 i+2)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 3\)
7 2 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(3 i)} \\ {x^{(1)}(i)=d^{(0)}(3 i+1)} \\ {x^{(2)}(i)=d^{(0)}(3 i+2)} \\ {x^{(3)}(i)=d^{(1)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(5)}(i)=d^{(1)}(4 i+2)} \\ {x^{(6)}(i)=d^{(1)}(4 i+3)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 3=M_{\mathrm{symb}}^{(1)} / 4\)
8 2 \(\begin{array}{l}{x^{(0)}(i)=d^{(0)}(4 i)} \\ {x^{(1)}(i)=d^{(0)}(4 i+1)} \\ {x^{(2)}(i)=d^{(0)}(4 i+2)} \\ {x^{(3)}(i)=d^{(0)}(4 i+3)} \\ {x^{(3)}(i)=d^{(0)}(4 i)} \\ {x^{(4)}(i)=d^{(1)}(4 i+1)} \\ {x^{(6)}(i)=d^{(1)}(4 i+2)} \\ {x^{(7)}(i)=d^{(1)}(4 i+3)}\end{array}\)\(M_{\mathrm{symb}}^{\mathrm{layer}}=M_{\mathrm{symb}}^{(0)} / 4=M_{\mathrm{symb}}^{(1)} / 4\)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM