yolo---圖像標注工具
(1)LabelImg工具 這個工具是用於目標檢測的標注工具,制作類VOC數據集.該工具是多平台 下載網址1 @https://github.com/lzx1413/LabelImgTool 使用方法 執行: make all 執行: ./labelImg.py 修改類別: 修改 data/predefined_classes.txt 為你自己的類別即可 然后生成的XML文件會保存在Annotation文件夾下。當然,也可以自己指定。 @https://blog.csdn.net/weixin_41850360/article/details/81219626 下載網址2 @https://github.com/tzutalin/labelImg 使用方法 Python 3 + Qt5 (Recommended) sudo apt-get install pyqt5-dev-tools sudo pip3 install -r requirements/requirements-linux-python3.txt make qt5py3 python3 labelImg.py python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] labelImg圖像標注工具的詳細使用 @https://blog.csdn.net/gaoyu1253401563/article/details/89512098 圖片標注工具LabelImg使用教程 @https://blog.csdn.net/jesse_mx/article/details/53606897
(2)Yolo的標注工具:Yolo_mark 下載網址 @https://github.com/AlexeyAB/Yolo_mark
環境: Ubuntu16.04 + Opnecv + Cmake
它是yolo2的團隊開源的一個圖像標注工具,為了方便其他人使用yolo2訓練自己的任務模型。在linux和win下都可運行,依賴opencv庫。 每個參數的含義@https://blog.csdn.net/middlto/article/details/89946201#11_yolo_mark_36 YOLO圖像快速標注工具 @https://blog.csdn.net/wulala789/article/details/79792449 @https://github.com/sanfooh/quick_yolo2_label_tool Yolo_mark 使用教程@https://blog.csdn.net/Mr_kuilei/article/details/86324235
u@u160406:~/4-yoloPjreddie/Yolo_mark-master$ sudo chmod +x yolo_mark u@u160406:~/4-yoloPjreddie/Yolo_mark-master$ ./yolo_mark x64/Release/data/images x64/Release/data/wp_train.txt x64/Release/data/obj.names ./yolo_mark /home/u/wp_data/people_diff_size/other /home/u/wp_data/people_diff_size/other/train003.txt x64/Release/data/obj.names
感受:
個人嘗試用了labelImg 和 yolo_mark :
labelImg :步驟稍微復雜了一點,先生成xml,手動轉成txt。
個人覺得好用一些,從txt來看,其精度稍微高一點,尤其對於再訓練的小目標
yolo_mark: 簡單一些,直接在image圖像里生成對應的txt。從txt來看,其精度稍微低一點
(3)ImageLabel https://github.com/lanbing510/ImageLabel (4)BBox-Label-Tool https://github.com/puzzledqs/BBox-Label-Tool (5)Labelme用於圖像分割標注。 標注過程是使用多邊形進行標注,然后輸入標簽即可。標注完成之后點擊保存,即將標注好的標簽保存稱相應的json格式的數據。 下載網址 @https://github.com/wkentaro/labelme 深度學習圖像標注工具匯總: @https://blog.csdn.net/chaipp0607/article/details/79036312 @https://zhuanlan.zhihu.com/p/91171629
@ https://github.com/msnh2012/CasiaLabeler
How to mark bounded boxes of objects and create annotation files:
Here you can find repository with GUI-software for marking bounded boxes of objects
and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
With example of: train.txt
, obj.names
, obj.data
, yolo-obj.cfg
, air
1-6.txt
, bird
1-4.txt
for 2 classes of objects (air, bird)
and train_obj.cmd
with example how to train this image-set with Yolo v2 & v3
Different tools for marking objects in images:
- in C++: https://github.com/AlexeyAB/Yolo_mark
- in Python: https://github.com/tzutalin/labelImg
- in Python: https://github.com/Cartucho/OpenLabeling
- in C++: https://www.ccoderun.ca/darkmark/
- in JavaScript: https://github.com/opencv/cvat
@https://github.com/AlexeyAB/darknet#how-to-use