CPP(c++) 多線程


參考鏈接:
線程支持庫:https://zh.cppreference.com/w/cpp/thread 若能懂此鏈接,下面都不用看
1. https://blog.csdn.net/coolwriter/article/details/79883253
2. https://blog.csdn.net/coolwriter/article/details/79884298

thread:構造線程

#include <iostream>       // std::cout  
#include <thread>         // std::thread  

void thr_function1()  
{  
    for (int i = 0; i != 10; ++i)  
    {  
        std::cout << "thread 1 print " << i << std::endl;  
    }  
}  

void thr_function2(int n)  
{  
    std::cout << "thread 1 print " << n << std::endl;  
}  

int main()  
{  
    std::thread t1(thr_function1);     // spawn new thread that calls foo()  
    std::thread t2(thr_function2, 111);  // spawn new thread that calls bar(0)  
    std::cout << "main, foo and bar now execute concurrently...\n";  
    // synchronize threads:  
    t1.join();                // pauses until first finishes 主線程等待t1線程結束 
    t2.join();               // pauses until second finishes 主線程等待t2線程結束
    std::cout << "thread 1 and htread 2 completed.\n";  
    return 0;  
}  

class thread

member: http://www.cplusplus.com/reference/thread/thread/
 Member types
get_id  //Thread id (public member type )
native_handle_type  //Native handle type (public member type )
 Member functions:
Construct thread (public member function )
Thread destructor (public member function )
operator=   // Move-assign thread (public member function )
get_id  // Get thread id (public member function )
joinable   //Check if joinable (public member function )
join  //Join thread (public member function )
detach  //Detach thread (public member function )
swap //Swap threads (public member function )
native_handle  //Get native handle (public member function )
hardware_concurrency [static]  //Detect hardware concurrency (public static member function )

多線程變量安全
方式一: 原子操作
方式二: std::mutex 互斥量

std::mutex 互斥量: https://zh.cppreference.com/w/cpp/thread/mutex

#include <iostream>       // std::cout  
#include <thread>         // std::thread  
#include <mutex>          // std::mutex  

std::mutex mtx;           // mutex for critical section  
void print_block(int n, char c) {  
    // critical section (exclusive access to std::cout signaled by locking mtx):
    // mtx.try_lock //嘗試鎖定互斥,若互斥不可用,則返回  
    mtx.lock();   //鎖定互斥,若互斥不可用則阻塞
    for (int i = 0; i<n; ++i) { std::cout << c; }  
    std::cout << '\n';  
    mtx.unlock();  //解開互斥      
}  
int main()  
{  
    std::thread th1(print_block, 50, '*');  
    std::thread th2(print_block, 50, '$');  
    th1.join();  
    th2.join();  
    return 0;  
}  

mutex類4種
std::mutex,最基本的 Mutex 類。
std::recursive_mutex,遞歸 Mutex 類。
std::time_mutex,定時 Mutex 類。
std::recursive_timed_mutex,定時遞歸 Mutex 類。

recursive_mutex: https://zh.cppreference.com/w/cpp/thread/recursive_mutex
std::recursive_mutex 與 std::mutex一樣,也是一種可以被上鎖的對象,但是和 std::mutex 不同的是,std::recursive_mutex 允許同一個線程對互斥量多次上鎖(即遞歸上鎖),
來獲得對互斥量對象的多層所有權,std::recursive_mutex 釋放互斥量時需要調用與該鎖層次深度相同次數的 unlock(),可理解為 lock() 次數和 unlock() 次數相同,除此之外,
std::recursive_mutex 的特性和 std::mutex 大致相同。

time_mutex: //https://zh.cppreference.com/w/cpp/thread/timed_mutex
std::time_mutex 比 std::mutex 多了兩個成員函數:
try_lock_for(): //嘗試鎖定互斥,若互斥在指定的時限時期中不可用則返回
try_lock_until(): //嘗試鎖定互斥,若直至抵達指定時間點互斥不可用則返回

#include <iostream>       // std::cout  
#include <chrono>         // std::chrono::milliseconds  
#include <thread>         // std::thread  
#include <mutex>          // std::timed_mutex  

std::timed_mutex mtx;  
void fireworks() {  
  // waiting to get a lock: each thread prints "-" every 200ms:  
  while (!mtx.try_lock_for(std::chrono::milliseconds(200))) {  
    std::cout << "-";  
  }  
  // got a lock! - wait for 1s, then this thread prints "*"  
  std::this_thread::sleep_for(std::chrono::milliseconds(1000));  
  std::cout << "*\n";  
  mtx.unlock();  
}

int main ()  
{  
  std::thread threads[10];  
  // spawn 10 threads:  
  for (int i=0; i<10; ++i)  
    threads[i] = std::thread(fireworks);  
  for (auto& th : threads) th.join();  
  return 0;  
}  

Lock 類(兩種)
std::lock_guard: //https://zh.cppreference.com/w/cpp/thread/lock_guard
與 Mutex RAII 相關,方便線程對互斥量上鎖。 //https://zh.cppreference.com/w/cpp/thread/lock_guard
*值得注意的是,lock_guard 對象並不負責管理 Mutex 對象的生命周期,lock_guard 對象只是簡化了 Mutex 對象的上鎖和解鎖操作,
***: 方便線程對互斥量上鎖,即在某個 lock_guard 對象的聲明周期內,它所管理的鎖對象會一直保持上鎖狀態;
***: 而 lock_guard 的生命周期結束之后,它所管理的鎖對象會被解鎖。

#include <iostream>       // std::cout  
#include <thread>         // std::thread  
#include <mutex>          // std::mutex, std::lock_guard, std::adopt_lock  
std::mutex mtx;           // mutex for critical section  
void print_thread_id(int id) {  
    mtx.lock();  
    std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);  //= mtx.lock() 且在lck 析構時,mtk.unlock 
    std::cout << "thread #" << id << '\n';  
}  
int main()  
{  
    std::thread threads[10];  
    // spawn 10 threads:  
    for (int i = 0; i<10; ++i)  
        threads[i] = std::thread(print_thread_id, i + 1);  

    for (auto& th : threads) th.join();  

    return 0;  
}  

**** scope_lock:構造時是否加鎖是可選的(不加鎖時假定當前線程已經獲得鎖的所有權),析構時自動釋放鎖,所有權不可轉移,對象生存期內不允許手動加鎖和釋放鎖。


std::unique_lock: //https://zh.cppreference.com/w/cpp/thread/unique_lock
與 Mutex RAII 相關,方便線程對互斥量上鎖,但提供了更好的上鎖和解鎖控制。
類 unique_lock 是通用互斥包裝器,允許延遲鎖定、鎖定的有時限嘗試、遞歸鎖定、所有權轉移和與條件變量一同使用。
unique_lock比lock_guard使用更加靈活,功能更加強大。
使用unique_lock需要付出更多的時間、性能成本。所以能用lock_guard時,用lock_guard

class LogFile {
    std::mutex _mu;
    ofstream f;
public:
    LogFile() {
        f.open("log.txt");
    }
    ~LogFile() {
        f.close();
    }
    void shared_print(string msg, int id) {

        std::unique_lock<std::mutex> guard(_mu);//如果 guard(_mu, std::defer_lock); 表示不上鎖
        //do something 1
        guard.unlock(); //臨時解鎖

        //do something 2

        guard.lock(); //繼續上鎖
        // do something 3
        f << msg << id << endl;
        cout << msg << id << endl;
        // 結束時析構guard會臨時解鎖
        // 這句話可要可不要,不寫,析構的時候也會自動執行
        // guard.ulock();
    }

};

 



condition_variable

類是同步原語 //https://zh.cppreference.com/w/cpp/thread/condition_variable
能用於阻塞一個線程,或同時阻塞多個線程,直至另一線程修改共享變量(條件)並通知 condition_variable 。
當 std::condition_variable 對象的某個 wait 函數被調用的時候,它使用 std::unique_lock(通過 std::mutex) 來鎖住當前線程。當前線程會一直被阻塞,直到另外一個線程在相同的 std::condition_variable 對象上調用了 notification 函數來喚醒當前線程。

#include <iostream>                // std::cout
#include <thread>                // std::thread
#include <mutex>                // std::mutex, std::unique_lock
#include <condition_variable>    // std::condition_variable

std::mutex mtx; // 全局互斥鎖.
std::condition_variable cv; // 全局條件變量.
bool ready = false; // 全局標志位.

void do_print_id(int id)
{
    std::unique_lock <std::mutex> lck(mtx);
    while (!ready) // 如果標志位不為 true, 則等待...
        cv.wait(lck); // 當前線程被阻塞, 當全局標志位變為 true 之后,此外還有 wait for ,wait until 等語句
    // 線程被喚醒, 繼續往下執行打印線程編號id.
    std::cout << "thread " << id << '\n';
}

void go()
{
    std::unique_lock <std::mutex> lck(mtx);
    ready = true; // 設置全局標志位為 true.
    cv.notify_all(); // 喚醒所有線程.
    //notify_one 通知一個等待的線程 
}

int main()
{
  std::thread threads[10];
  // spawn 10 threads:
  for (int i = 0; i < 10; ++i)
      threads[i] = std::thread(do_print_id, i);
  std::cout << "10 threads ready to race...\n";
  go(); // go!
  for (auto & th:threads)
    th.join();
  return 0;
}

結果:

10 threads ready to race...
thread 1
thread 0
thread 2
thread 3
thread 4
thread 5
thread 6
thread 7
thread 8
thread 9


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM