Python爬蟲之數據解析的三種方式


Python爬蟲之數據解析的三種方式

requests實現數據爬取及解析數據的流程

1. 執行url
2. 基於requests模塊發起請求
3. 獲取響應對象的數據
4. 解析數據
5. 數據持久化

 

1. 正則解析

1.1 爬取圖片

import re
import os
import requests

url="https://www.meizitu.com/a/4774.html"

headers={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

params ={
    "src": "pc",
    "page": "searchresult",
    "time": "1578311515256"
}

img_data = requests.get(url=url,headers=headers).text

ex='<img src="(.*?)".*?>'
pa = re.compile(ex)

img_urls = pa.findall(img_data)

print(img_urls)

urls='http://pic.topmeizi.com/wp-content/uploads/2016a/02/05/limg.jpg'

images = requests.get(url=urls,headers=headers).content
  
for urls in img_urls:
    img_name = urls.split("/")[-1]
    num = str(img_urls.index(urls))
    local_url = 'images/' + num + img_name

    images = requests.get(url=urls,headers=headers).content
    with open(local_url,'wb') as fp:
        fp.write(images)
View Code

 

2. bs4解析(BeautifulSoup)

安裝

pip3 install bs4

pip3 install lxml

bs4原理解析

bs4原理解析
    (1) 實例化一個BeautifulSoup對象,必須把即將被解析的頁面源碼加載到該對象中
    (2) 調用該對象中相關的屬性或方法進行標簽的定位和內容的提取

--導包: from bs4 import BeautifulSoup
--
    (1) 轉化本地文件:
        soup = BeautifulSoup(open(本地文件),'lxml')
    (2) 轉化網絡文件:
        soup = BeautifulSoup('字符串類型或者字節類型數據','lxml')

            

BeautifulSoup對象方法

(1) 根據標簽名查找
    - soup.a # 查找第一個a標簽
(2) 獲取標簽屬性
    - soup.a.attrs # 獲取a標簽所有屬性和屬性值,返回一個字典
    - soup.a.attrs['href'] # 獲取href屬性
    - soup.a['href'] # 獲取href屬性
(3) 獲取文本內容
    - soup.string # 獲取當前標簽的文本內容
    - soup.text # 獲取該標簽下所有本文內容
    - soup.text() # 獲取該標簽下所有文本內容
(4) find() : 找到第一個符合要求的標簽
    - soup.find('a')
    - soup.find('a',title='xxx')
(5) find_all() : 找到所有符合要求的標簽,返回一個列表
    - soup.find_all('a')
    - soup.find_all('a','b') # 找到所有的a標簽和b標簽
    - soup.find_all('a',limit=2) # 限制前兩個
(6) 根據選擇器選擇指定的額內容
    select選擇器,返回一個列表: soup.select('#id')
    - 標簽選擇器,類選擇器,id選擇器,層級選擇器
    - 層級選擇器:
        - 單層級: div > p > a > span
        - 多層級: div p

2.1 爬取三國演義

import requests
from bs4 import BeautifulSoup

home_url = "http://www.shicimingju.com/book/sanguoyanyi.html"

headers={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

page_text = requests.get(url=home_url,headers=headers).text

soup = BeautifulSoup(page_text,'lxml')

a_list = soup.select(".book-mulu a")

f = open("sanguo.txt","w",encoding="utf-8")
for a_lst in a_list[0:1]:
    title = a_lst.string
    detail_url = "http://www.shicimingju.com" + a_lst["href"]
    
    detail_data = requests.get(url=detail_url,headers=headers).text
    soup2 = BeautifulSoup(detail_data,"lxml")
    
    desc = soup2.select(".chapter_content p")[0].string

f.close()
View Code

 

3. xpath解析(常用)

xpath原理解析

下載: pip3 install lxml

導入: from lxml import etree

原理解析:
    (1) 實例化一個etree對象,把將要解析的頁面源碼加載到該對象中
    (2) 使用該對象中的xpath方法結合xpath表達式進行標簽的定位和數據提取

使用方法:
    (1) 本地文件: tree = etree.parse(本地文件)
                        tree.xpath('/div[@class=""]')
    (2) 網絡文件: tree = etree.HTML(網頁字符串)
                        tree.xpath('//div[@class=""]')


常用xpath表達式:
    /: 相對定位
    //:任意位置定位

屬性定位:
    tag[@attrName=""]     # div[@class=""]
層級&索引定位:
    # 下標索引從1開始
    tree.xpath('//div[@class=""]/ul/li[2]')
邏輯運算:
    tree.xpath('//a[@href="" and @class="du"]') # 找到href屬性為空,且class屬性為du的a標簽
模糊匹配:
    //div[contains(@class,"ng")]
    //div[starts-with(@class,"ta")]
取文本:
    //div[@class="abc"]/p[1]/text()     # 取直系文本內容
    //div[@class="abc"]/p[1]//text()    # 取所有文本內容
取屬性:
    //div[@class="abc"]//li[2]/a/@href

 

3.1 爬取二手房信息1

import requests
from lxml import etree
import re

home_url = "https://sz.58.com/ershoufang/"

headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

page_text = requests.get(url=home_url,headers=headers).text

tree = etree.HTML(page_text)
page_lst = tree.xpath('//ul[@class="house-list-wrap"]/li')
print(page_lst)
all_data = list()
f = open('./58二手房.txt',"w",encoding="utf-8")

for li in page_lst:
    title = li.xpath('./div[2]/h2/a/text()')[0]
    price1 = li.xpath('./div[3]/p/b/text()')
    price2 = li.xpath('./div[3]/p/text()')
    price = price1[0] + price2[0] + "(" + price2[1] + ")"
    deti_url = li.xpath('./div[2]/h2/a/@href')[0]
#     print(deti_url)
    
    detail_text = requests.get(url=deti_url,headers=headers).text
    
    tree = etree.HTML(detail_text)
    
    desc = "".join(tree.xpath('//div[@id="generalSituation"]/div//text()'))
    desc = desc.replace("\n","").replace(" ","")
    pa = re.compile("房屋總價(.*?)房屋戶型")
    desc2 = re.sub(pa,"房屋總價" + price + "房屋戶型",desc)
    dic = {
        "title":title,
        "price":price,
        "desc":desc2
    }
    f.write(title + ": " +desc2 + "\n")
    print("{}數據已寫入".format(title))

f.close()
View Code

3.2 爬取二手房信息2

import requests
from lxml import etree
import re

home_url = "https://shenzhen.leyoujia.com/esf/"

headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

page_text = requests.get(url=home_url,headers=headers).text

tree = etree.HTML(page_text)
page_lst = tree.xpath('//div[@class="list-box"]/ul/li')

f = open("./樂有家二手房.txt","w",encoding="utf-8")

for li in page_lst:
    title = li.xpath('./div[2]/p/a/text()')
    if title:
        title = title[0]
        detail_url = "https://shenzhen.leyoujia.com" + li.xpath('./div[2]/p/a/@href')[0]
        
        detail_text = requests.get(url=detail_url,headers=headers).text
        
        tree = etree.HTML(detail_text)
        desc = " ".join(tree.xpath('//div[@class="xq-box xq-box2"]/div/p/span/text()'))
        
        f.write(title + ": " + desc + "\n")
        print("{}數據已寫入 ... ".format(title))
f.close()
print("數據寫入完成!")
View Code

3.3 解析所有城市名稱

import requests
from lxml import etree

home_url = "https://www.aqistudy.cn/historydata/"

headers ={
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

page_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(page_text)
hot_data = ",".join(tree.xpath('//div[@class="hot"]/div/ul/li/a/text()'))

all_ul_data = tree.xpath('//div[@class="all"]/div/ul')

f = open("./城市列表.txt","w",encoding="utf-8")

f.write("熱門城市:" + hot_data +"\n\n")

for ul in all_ul_data:
    title = ul.xpath('./div[1]/b/text()')[0]
    citys = ",".join(ul.xpath('./div[2]/li/a/text()'))
    
    f.write(title + " " +citys + "\n")
    print("{}數據已寫入 ... ".format(title))
f.close()
print("已完成!!!")
View Code

3.4 爬取貼吧留言

import requests
from lxml import etree
import re

home_url = "https://tieba.baidu.com/p/6428562248"
headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}

html_text = requests.get(url=home_url,headers=headers).text

tree = etree.HTML(html_text)

contents = tree.xpath('//div[@class="d_post_content j_d_post_content "]')

# 回復留言
ans_url = "https://tieba.baidu.com/p/totalComment?t=1578396061786&tid=6428562248&fid=280050&pn=1&see_lz=0"

params = {
    "t": "1578396061786",
    "": "6428562248",
    "": "280050",
    "pn": "1",
    "see_lz": "0"
}

comment_list = requests.get(url=ans_url,params=params,headers=headers).json()["data"]["comment_list"]
# 留言
content_all = str()
for div in contents:
    msg_top = " ".join(div.xpath('./text()')).strip()
    if msg_top:
        content_all += msg_top + "\n"
        detail_id = div.xpath('./@id')[0][13:]
        if comment_list.get(detail_id):
            comment_data = comment_list[detail_id]
            content_all += "回復:" + "\n"
            for comm in comment_data["comment_info"]:
                username = comm["username"]
                content = comm["content"]
                con_all = "    " + username + " : " + content
                content_all += con_all + "\n"
        content_all += "---------------------------------\n"

#
pa = re.compile(r"<.*?>")
content_all = pa.sub("",content_all)

title = tree.xpath('//div[@id="j_core_title_wrap"]/h3/text()')[0]

file_name = "./貼吧/LOL/{}.txt".format(title)

f = open(file_name,"w",encoding="utf-8")
f.write(content_all)

f.close()

print("數據已下載完成!!!")
View Code

3.5 爬取視頻

import requests
from lxml import etree
import re

home_url = "https://www.pearvideo.com/category_31"


page_text = requests.get(url=home_url,headers=headers).text

tree = etree.HTML(page_text)

li_list = tree.xpath('//ul[@id="listvideoListUl"]/li')

for li in li_list:
    title = li.xpath('./div/a/div[2]/text()')[0]
    detail_url = li.xpath('./div/a/div[1]/div/div/@style')[0]
    pa = re.compile(r"cont-(.*?)-")
    video_url = "https://www.pearvideo.com/video_" + pa.findall(detail_url)[0]
    
    video_text = requests.get(url=video_url,headers=headers).text
    
    pa = re.compile(r"https://video.pearvideo.com/.*?.mp4")
    video_url = pa.findall(video_text)[0]
    video_lcoal = "./梨視頻/{}.mp4".format(title)
    f = open(video_lcoal,"wb")
    video_data = requests.get(url=video_url,headers=headers).content
    
    f.write(video_data)
    f.close()
    
print("數據已下載完成!!!")
View Code


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM