Python爬蟲之數據解析的三種方式
requests實現數據爬取及解析數據的流程
1. 執行url
2. 基於requests模塊發起請求
3. 獲取響應對象的數據
4. 解析數據
5. 數據持久化
1. 正則解析
1.1 爬取圖片
import re
import os
import requests
url="https://www.meizitu.com/a/4774.html"
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
params ={
"src": "pc",
"page": "searchresult",
"time": "1578311515256"
}
img_data = requests.get(url=url,headers=headers).text
ex='<img src="(.*?)".*?>'
pa = re.compile(ex)
img_urls = pa.findall(img_data)
print(img_urls)
urls='http://pic.topmeizi.com/wp-content/uploads/2016a/02/05/limg.jpg'
images = requests.get(url=urls,headers=headers).content
for urls in img_urls:
img_name = urls.split("/")[-1]
num = str(img_urls.index(urls))
local_url = 'images/' + num + img_name
images = requests.get(url=urls,headers=headers).content
with open(local_url,'wb') as fp:
fp.write(images)
View Code
2. bs4解析(BeautifulSoup)
安裝
pip3 install bs4
pip3 install lxml
bs4原理解析
bs4原理解析
(1) 實例化一個BeautifulSoup對象,必須把即將被解析的頁面源碼加載到該對象中
(2) 調用該對象中相關的屬性或方法進行標簽的定位和內容的提取
--導包: from bs4 import BeautifulSoup
--
(1) 轉化本地文件:
soup = BeautifulSoup(open(本地文件),'lxml')
(2) 轉化網絡文件:
soup = BeautifulSoup('字符串類型或者字節類型數據','lxml')
BeautifulSoup對象方法
(1) 根據標簽名查找
- soup.a # 查找第一個a標簽
(2) 獲取標簽屬性
- soup.a.attrs # 獲取a標簽所有屬性和屬性值,返回一個字典
- soup.a.attrs['href'] # 獲取href屬性
- soup.a['href'] # 獲取href屬性
(3) 獲取文本內容
- soup.string # 獲取當前標簽的文本內容
- soup.text # 獲取該標簽下所有本文內容
- soup.text() # 獲取該標簽下所有文本內容
(4) find() : 找到第一個符合要求的標簽
- soup.find('a')
- soup.find('a',title='xxx')
(5) find_all() : 找到所有符合要求的標簽,返回一個列表
- soup.find_all('a')
- soup.find_all('a','b') # 找到所有的a標簽和b標簽
- soup.find_all('a',limit=2) # 限制前兩個
(6) 根據選擇器選擇指定的額內容
select選擇器,返回一個列表: soup.select('#id')
- 標簽選擇器,類選擇器,id選擇器,層級選擇器
- 層級選擇器:
- 單層級: div > p > a > span
- 多層級: div p
2.1 爬取三國演義
import requests
from bs4 import BeautifulSoup
home_url = "http://www.shicimingju.com/book/sanguoyanyi.html"
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
page_text = requests.get(url=home_url,headers=headers).text
soup = BeautifulSoup(page_text,'lxml')
a_list = soup.select(".book-mulu a")
f = open("sanguo.txt","w",encoding="utf-8")
for a_lst in a_list[0:1]:
title = a_lst.string
detail_url = "http://www.shicimingju.com" + a_lst["href"]
detail_data = requests.get(url=detail_url,headers=headers).text
soup2 = BeautifulSoup(detail_data,"lxml")
desc = soup2.select(".chapter_content p")[0].string
f.close()
View Code
3. xpath解析(常用)
xpath原理解析
下載: pip3 install lxml
導入: from lxml import etree
原理解析:
(1) 實例化一個etree對象,把將要解析的頁面源碼加載到該對象中
(2) 使用該對象中的xpath方法結合xpath表達式進行標簽的定位和數據提取
使用方法:
(1) 本地文件: tree = etree.parse(本地文件)
tree.xpath('/div[@class=""]')
(2) 網絡文件: tree = etree.HTML(網頁字符串)
tree.xpath('//div[@class=""]')
常用xpath表達式:
/: 相對定位
//:任意位置定位
屬性定位:
tag[@attrName=""] # div[@class=""]
層級&索引定位:
# 下標索引從1開始
tree.xpath('//div[@class=""]/ul/li[2]')
邏輯運算:
tree.xpath('//a[@href="" and @class="du"]') # 找到href屬性為空,且class屬性為du的a標簽
模糊匹配:
//div[contains(@class,"ng")]
//div[starts-with(@class,"ta")]
取文本:
//div[@class="abc"]/p[1]/text() # 取直系文本內容
//div[@class="abc"]/p[1]//text() # 取所有文本內容
取屬性:
//div[@class="abc"]//li[2]/a/@href
3.1 爬取二手房信息1
import requests
from lxml import etree
import re
home_url = "https://sz.58.com/ershoufang/"
headers ={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
page_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(page_text)
page_lst = tree.xpath('//ul[@class="house-list-wrap"]/li')
print(page_lst)
all_data = list()
f = open('./58二手房.txt',"w",encoding="utf-8")
for li in page_lst:
title = li.xpath('./div[2]/h2/a/text()')[0]
price1 = li.xpath('./div[3]/p/b/text()')
price2 = li.xpath('./div[3]/p/text()')
price = price1[0] + price2[0] + "(" + price2[1] + ")"
deti_url = li.xpath('./div[2]/h2/a/@href')[0]
# print(deti_url)
detail_text = requests.get(url=deti_url,headers=headers).text
tree = etree.HTML(detail_text)
desc = "".join(tree.xpath('//div[@id="generalSituation"]/div//text()'))
desc = desc.replace("\n","").replace(" ","")
pa = re.compile("房屋總價(.*?)房屋戶型")
desc2 = re.sub(pa,"房屋總價" + price + "房屋戶型",desc)
dic = {
"title":title,
"price":price,
"desc":desc2
}
f.write(title + ": " +desc2 + "\n")
print("{}數據已寫入".format(title))
f.close()
View Code
3.2 爬取二手房信息2
import requests
from lxml import etree
import re
home_url = "https://shenzhen.leyoujia.com/esf/"
headers ={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
page_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(page_text)
page_lst = tree.xpath('//div[@class="list-box"]/ul/li')
f = open("./樂有家二手房.txt","w",encoding="utf-8")
for li in page_lst:
title = li.xpath('./div[2]/p/a/text()')
if title:
title = title[0]
detail_url = "https://shenzhen.leyoujia.com" + li.xpath('./div[2]/p/a/@href')[0]
detail_text = requests.get(url=detail_url,headers=headers).text
tree = etree.HTML(detail_text)
desc = " ".join(tree.xpath('//div[@class="xq-box xq-box2"]/div/p/span/text()'))
f.write(title + ": " + desc + "\n")
print("{}數據已寫入 ... ".format(title))
f.close()
print("數據寫入完成!")
View Code
3.3 解析所有城市名稱
import requests
from lxml import etree
home_url = "https://www.aqistudy.cn/historydata/"
headers ={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
page_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(page_text)
hot_data = ",".join(tree.xpath('//div[@class="hot"]/div/ul/li/a/text()'))
all_ul_data = tree.xpath('//div[@class="all"]/div/ul')
f = open("./城市列表.txt","w",encoding="utf-8")
f.write("熱門城市:" + hot_data +"\n\n")
for ul in all_ul_data:
title = ul.xpath('./div[1]/b/text()')[0]
citys = ",".join(ul.xpath('./div[2]/li/a/text()'))
f.write(title + " " +citys + "\n")
print("{}數據已寫入 ... ".format(title))
f.close()
print("已完成!!!")
View Code
3.4 爬取貼吧留言
import requests
from lxml import etree
import re
home_url = "https://tieba.baidu.com/p/6428562248"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36"
}
html_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(html_text)
contents = tree.xpath('//div[@class="d_post_content j_d_post_content "]')
# 回復留言
ans_url = "https://tieba.baidu.com/p/totalComment?t=1578396061786&tid=6428562248&fid=280050&pn=1&see_lz=0"
params = {
"t": "1578396061786",
"": "6428562248",
"": "280050",
"pn": "1",
"see_lz": "0"
}
comment_list = requests.get(url=ans_url,params=params,headers=headers).json()["data"]["comment_list"]
# 留言
content_all = str()
for div in contents:
msg_top = " ".join(div.xpath('./text()')).strip()
if msg_top:
content_all += msg_top + "\n"
detail_id = div.xpath('./@id')[0][13:]
if comment_list.get(detail_id):
comment_data = comment_list[detail_id]
content_all += "回復:" + "\n"
for comm in comment_data["comment_info"]:
username = comm["username"]
content = comm["content"]
con_all = " " + username + " : " + content
content_all += con_all + "\n"
content_all += "---------------------------------\n"
#
pa = re.compile(r"<.*?>")
content_all = pa.sub("",content_all)
title = tree.xpath('//div[@id="j_core_title_wrap"]/h3/text()')[0]
file_name = "./貼吧/LOL/{}.txt".format(title)
f = open(file_name,"w",encoding="utf-8")
f.write(content_all)
f.close()
print("數據已下載完成!!!")
View Code
3.5 爬取視頻
import requests
from lxml import etree
import re
home_url = "https://www.pearvideo.com/category_31"
page_text = requests.get(url=home_url,headers=headers).text
tree = etree.HTML(page_text)
li_list = tree.xpath('//ul[@id="listvideoListUl"]/li')
for li in li_list:
title = li.xpath('./div/a/div[2]/text()')[0]
detail_url = li.xpath('./div/a/div[1]/div/div/@style')[0]
pa = re.compile(r"cont-(.*?)-")
video_url = "https://www.pearvideo.com/video_" + pa.findall(detail_url)[0]
video_text = requests.get(url=video_url,headers=headers).text
pa = re.compile(r"https://video.pearvideo.com/.*?.mp4")
video_url = pa.findall(video_text)[0]
video_lcoal = "./梨視頻/{}.mp4".format(title)
f = open(video_lcoal,"wb")
video_data = requests.get(url=video_url,headers=headers).content
f.write(video_data)
f.close()
print("數據已下載完成!!!")
View Code