在編寫、使用策略時,經常會使用一些不常用的K線周期數據。然而交易所、數據源又沒有提供這些周期的數據。只能通過使用已有周期的數據進行合成。合成算法已經有一個JavaScript版本了(鏈接),其實移植一段JavaScript代碼為Python版本很簡單。接下來我們一起寫一個Python版本的K線合成算法。
JavaScript版本
function GetNewCycleRecords (sourceRecords, targetCycle) { // K線合成函數 var ret = [] // 首先獲取源K線數據的周期 if (!sourceRecords || sourceRecords.length < 2) { return null } var sourceLen = sourceRecords.length var sourceCycle = sourceRecords[sourceLen - 1].Time - sourceRecords[sourceLen - 2].Time if (targetCycle % sourceCycle != 0) { Log("targetCycle:", targetCycle) Log("sourceCycle:", sourceCycle) throw "targetCycle is not an integral multiple of sourceCycle." } if ((1000 * 60 * 60) % targetCycle != 0 && (1000 * 60 * 60 * 24) % targetCycle != 0) { Log("targetCycle:", targetCycle) Log("sourceCycle:", sourceCycle) Log((1000 * 60 * 60) % targetCycle, (1000 * 60 * 60 * 24) % targetCycle) throw "targetCycle cannot complete the cycle." } var multiple = targetCycle / sourceCycle var isBegin = false var count = 0 var high = 0 var low = 0 var open = 0 var close = 0 var time = 0 var vol = 0 for (var i = 0 ; i < sourceLen ; i++) { // 獲取 時區偏移數值 var d = new Date() var n = d.getTimezoneOffset() if (((1000 * 60 * 60 * 24) - sourceRecords[i].Time % (1000 * 60 * 60 * 24) + (n * 1000 * 60)) % targetCycle == 0) { isBegin = true } if (isBegin) { if (count == 0) { high = sourceRecords[i].High low = sourceRecords[i].Low open = sourceRecords[i].Open close = sourceRecords[i].Close time = sourceRecords[i].Time vol = sourceRecords[i].Volume count++ } else if (count < multiple) { high = Math.max(high, sourceRecords[i].High) low = Math.min(low, sourceRecords[i].Low) close = sourceRecords[i].Close vol += sourceRecords[i].Volume count++ } if (count == multiple || i == sourceLen - 1) { ret.push({ High : high, Low : low, Open : open, Close : close, Time : time, Volume : vol, }) count = 0 } } } return ret }
有JavaScript算法,對於Python其實逐行翻譯移植就可以了,遇到JavaScript的內置函數,或者固有方法,對應的去Python中查找對應的方法即可,所以移植還是比較容易的。
算法邏輯完全一模一樣,只是JavaScript的函數調用var n = d.getTimezoneOffset(),移植到Python時,使用Python的time庫中的n = time.altzone代替。其它差異僅僅是語言語法方面的了(例如for循環的使用,布爾值的差別,邏輯與、邏輯非、邏輯或的使用差別等..)。
移植后的Python代碼:
import time def GetNewCycleRecords(sourceRecords, targetCycle): ret = [] # 首先獲取源K線數據的周期 if not sourceRecords or len(sourceRecords) < 2 : return None sourceLen = len(sourceRecords) sourceCycle = sourceRecords[-1]["Time"] - sourceRecords[-2]["Time"] if targetCycle % sourceCycle != 0 : Log("targetCycle:", targetCycle) Log("sourceCycle:", sourceCycle) raise "targetCycle is not an integral multiple of sourceCycle." if (1000 * 60 * 60) % targetCycle != 0 and (1000 * 60 * 60 * 24) % targetCycle != 0 : Log("targetCycle:", targetCycle) Log("sourceCycle:", sourceCycle) Log((1000 * 60 * 60) % targetCycle, (1000 * 60 * 60 * 24) % targetCycle) raise "targetCycle cannot complete the cycle." multiple = targetCycle / sourceCycle isBegin = False count = 0 barHigh = 0 barLow = 0 barOpen = 0 barClose = 0 barTime = 0 barVol = 0 for i in range(sourceLen) : # 獲取時區偏移數值 n = time.altzone if ((1000 * 60 * 60 * 24) - (sourceRecords[i]["Time"] * 1000) % (1000 * 60 * 60 * 24) + (n * 1000)) % targetCycle == 0 : isBegin = True if isBegin : if count == 0 : barHigh = sourceRecords[i]["High"] barLow = sourceRecords[i]["Low"] barOpen = sourceRecords[i]["Open"] barClose = sourceRecords[i]["Close"] barTime = sourceRecords[i]["Time"] barVol = sourceRecords[i]["Volume"] count += 1 elif count < multiple : barHigh = max(barHigh, sourceRecords[i]["High"]) barLow = min(barLow, sourceRecords[i]["Low"]) barClose = sourceRecords[i]["Close"] barVol += sourceRecords[i]["Volume"] count += 1 if count == multiple or i == sourceLen - 1 : ret.append({ "High" : barHigh, "Low" : barLow, "Open" : barOpen, "Close" : barClose, "Time" : barTime, "Volume" : barVol, }) count = 0 return ret # 測試 def main(): while True: r = exchange.GetRecords() r2 = GetNewCycleRecords(r, 1000 * 60 * 60 * 4) ext.PlotRecords(r2, "r2") Sleep(1000)
測試
火幣行情圖表

回測合成4小時圖表

以上代碼僅作為學習參考使用,如果用於具體策略中,請根據需求修改、測試。
如有BUG或者改進建議,歡迎留言,十分感謝 o^_^o
