去噪自編碼器模擬人類視覺機制能夠自動忍受圖像的噪聲來識別圖片。自編碼器的目標是要學習一個近似的恆等函數,使得輸出近似等於輸入。去噪自編碼器采用隨機的部分帶噪輸入來解決恆等函數問題,自編碼器能夠獲得輸入的良好表征,該表征使得自編碼器能進行去噪或恢復。
下面是代碼:
#加載庫和配置參數 #去噪自編碼器 import torch import torch.nn as nn import torch.utils as utils from torch.autograd import Variable import torchvision.datasets as dset import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt #配置參數 torch.manual_seed(1) n_epoch=200 batch_size=100 learning_rate=0.002 #下載圖片庫訓練集 mnist_train=dset.MNIST("./",train=True,transform=transforms.ToTensor(),target_transform=None,download=True) train_loader=torch.utils.data.DataLoader(dataset=mnist_train,batch_size=batch_size,shuffle=True) #Encoder和Decoder模型設置 class Encoder(nn.Module): def __init__(self): super(Encoder,self).__init__() self.layer1=nn.Sequential( nn.Conv2d(1,32,3,padding=1),#batch*32*28*28 nn.ReLU(), nn.BatchNorm2d(32), nn.Conv2d(32,32,3,padding=1),#batch*32*28*28 nn.ReLU(), nn.BatchNorm2d(32), nn.Conv2d(32,64,3,padding=1),#batch*64*28*28 nn.ReLU(), nn.BatchNorm2d(64), nn.Conv2d(64,64,3,padding=1),#batch*64*28*28 nn.ReLU(), nn.BatchNorm2d(64), nn.MaxPool2d(2,2)#batch*64*14*14 ) self.layer2=nn.Sequential( nn.Conv2d(64,128,3,padding=1),#batch*128*14*14 nn.ReLU(), nn.BatchNorm2d(128), nn.Conv2d(128,128,3,padding=1),#batch*128*14*14 nn.ReLU(), nn.BatchNorm2d(128), nn.MaxPool2d(2,2), nn.Conv2d(128,256,3,padding=1),#batch*256*14*14 nn.ReLU() ) def forward(self,x): out=self.layer1(x) out=self.layer2(out) out=out.view(batch_size,-1) return out encoder=Encoder().cuda() #decoder設置 class Decoder(nn.Module): def __init__(self): super(Decoder,self).__init__() self.layer1=nn.Sequential( nn.ConvTranspose2d(256,128,3,2,1,1),#batch*128*14*14 nn.ReLU(), nn.BatchNorm2d(128), nn.ConvTranspose2d(128,128,3,1,1),#batch*128*14*14 nn.ReLU(), nn.BatchNorm2d(128), nn.ConvTranspose2d(128,64,3,1,1),#batch*64*14*14 nn.ReLU(), nn.BatchNorm2d(64), nn.ConvTranspose2d(64,64,3,1,1),#batch*64*14*14 nn.ReLU(), nn.BatchNorm2d(64) ) self.layer2=nn.Sequential( nn.ConvTranspose2d(64,32,3,1,1),#batch*32*14*14 nn.ReLU(), nn.BatchNorm2d(32), nn.ConvTranspose2d(32,32,3,1,1),#batch*32*14*14 nn.ReLU(), nn.BatchNorm2d(32), nn.ConvTranspose2d(32,1,3,2,1,1),#batch*1*28*28 nn.ReLU() ) def forward(self,x): out=x.view(batch_size,256,7,7) out=self.layer1(out) out=self.layer2(out) return out decoder=Decoder().cuda() ###Loss 函數和優化器 parameters=list(encoder.parameters())+list(decoder.parameters()) loss_func=nn.MSELoss() optimizer=torch.optim.Adam(parameters,lr=learning_rate) ###自編碼器訓練 #添加噪聲 noise=torch.rand(batch_size,1,28,28) for I in range(n_epoch): for image,label in train_loader: image_n=torch.mul(image+0.25,0.1*noise) image=Variable(image).cuda() image_n=Variable(image_n).cuda() optimizer.zero_grad() output=encoder(image_n) output=decoder(output) loss=loss_func(output,image) loss.backward() optimizer.step() break print('epoch[{}/{}],loss:{:.4f}'.format(I+1,n_epoch,loss.item())) ####帶噪圖片和去噪圖片對比 img=image[0].cpu() input_img=image_n[0].cpu() output_img=output[0].cpu() origin=img.data.numpy() inp=input_img.data.numpy() out=output_img.data.numpy() plt.figure('denoising autoencoder') plt.subplot(131) plt.imshow(origin[0],cmap='gray') plt.subplot(132) plt.imshow(inp[0],cmap='gray') plt.subplot(133) plt.imshow(out[0],cmap='gray') plt.show() print(label[0])
