1.檢測人臉,畫人臉中心的運動軌跡
import cv2 import numpy as np #import argparse from collections import deque #ap = argparse.ArgumentParser() #args = vars(ap.parse_args()) face_cascade=cv2.CascadeClassifier("F:/software/anaconda/installdocument/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml") cap=cv2.VideoCapture(0) pts = deque(maxlen=124) while True: ret,frame=cap.read() frame=cv2.flip(frame,1) # print i.shape gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces=face_cascade.detectMultiScale(gray,1.3,5) l=len(faces) print (l) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(0,200,200),2) cv2.putText(frame,'face',(int(w/2+x),int(y-h/5)),cv2.FONT_HERSHEY_PLAIN,2.0,(255,255,255),2,1) center=(int(x+w/2),int(y+h/2)) print (center) pts.appendleft(center) for i in range(1,len(pts)): if pts[i-1]is None or pts[i]is None: continue thickness = int(np.sqrt(64 / float(i + 1)) * 2) cv2.line(frame, pts[i - 1], pts[i], (0, 225, 225), thickness) cv2.imshow("rstp",frame) if cv2.waitKey(1) & 0xFF == ord('q'): break #攝像頭釋放 cap.release() #銷毀所有窗口 cv2.destroyAllWindows()
2.獲取視頻中特定區域的顏色點運動軌跡
from collections import deque import numpy as np #import imutils import cv2 import time #設定紅色閾值,HSV空間 redLower = np.array([130, 51, 51]) redUpper = np.array([255, 255, 255]) #初始化追蹤點的列表 mybuffer = 64 pts = deque(maxlen=mybuffer) #打開攝像頭 camera = cv2.VideoCapture(0) #等待兩秒 time.sleep(2) #遍歷每一幀,檢測紅色瓶蓋 while True: #讀取幀 (ret, frame) = camera.read() #判斷是否成功打開攝像頭 if not ret: print ('No Camera' ) break #frame = imutils.resize(frame, width=600) #轉到HSV空間 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #根據閾值構建掩膜 mask = cv2.inRange(hsv, redLower, redUpper) #腐蝕操作 mask = cv2.erode(mask, None, iterations=2) #膨脹操作,其實先腐蝕再膨脹的效果是開運算,去除噪點 mask = cv2.dilate(mask, None, iterations=2) #輪廓檢測 cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] #初始化瓶蓋圓形輪廓質心 center = None #如果存在輪廓 if len(cnts) > 0: #找到面積最大的輪廓 c = max(cnts, key = cv2.contourArea) #確定面積最大的輪廓的外接圓 ((x, y), radius) = cv2.minEnclosingCircle(c) #計算輪廓的矩 M = cv2.moments(c) #計算質心 center = (int(M["m10"]/M["m00"]), int(M["m01"]/M["m00"])) #只有當半徑大於10時,才執行畫圖 if radius > 10: cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(frame, center, 5, (0, 0, 255), -1) #把質心添加到pts中,並且是添加到列表左側 pts.appendleft(center) #遍歷追蹤點,分段畫出軌跡 for i in range(1, len(pts)): if pts[i - 1] is None or pts[i] is None: continue #計算所畫小線段的粗細 thickness = int(np.sqrt(mybuffer / float(i + 1)) * 2.5) #畫出小線段 cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness) #res = cv2.bitwise_and(frame, frame, mask=mask) cv2.imshow('Frame', frame) #鍵盤檢測,檢測到esc鍵退出 k = cv2.waitKey(5)&0xFF if k == 27: break #攝像頭釋放 camera.release() #銷毀所有窗口 cv2.destroyAllWindows()
參考:https://blog.csdn.net/xiao__run/article/details/80572523