模型訓練好之后,我們就要想辦法將其持久化保存下來,不然關機或者程序退出后模型就不復存在了。本文介紹兩種持久化保存模型的方法:
在介紹這兩種方法之前,我們得先創建並訓練好一個模型,還是以mnist手寫數字識別數據集訓練模型為例:
In [1]:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, optimizers, Sequential
In [2]:
model = Sequential([ # 創建模型
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(32, activation=tf.nn.relu),
layers.Dense(10)
]
)
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255
x_test = x_test.reshape(10000, 784).astype('float32') / 255
model.compile(loss='sparse_categorical_crossentropy',
optimizer=keras.optimizers.RMSprop())
history = model.fit(x_train, y_train, # 進行簡單的1次迭代訓練
batch_size=64,
epochs=1)
Train on 60000 samples 60000/60000 [==============================] - 3s 46us/sample - loss: 2.3700
方法一:model.save()¶
通過模型自帶的save()方法可以將模型保存到一個指定文件中,保存的內容包括:
- 模型的結構
- 模型的權重參數
- 通過compile()方法配置的模型訓練參數
- 優化器及其狀態
In [3]:
model.save('mymodels/mnist.h5')
使用save()方法保存后,在mymodels目錄下就會有一個mnist.h5文件。需要使用模型時,通過keras.models.load_model()方法從文件中再次加載即可。
In [4]:
new_model = keras.models.load_model('mymodels/mnist.h5')
WARNING:tensorflow:Sequential models without an `input_shape` passed to the first layer cannot reload their optimizer state. As a result, your model isstarting with a freshly initialized optimizer.
新加載出來的new_model在結構、功能、參數各方面與model是一樣的。
通過save()方法,也可以將模型保存為SavedModel 格式。SavedModel格式是TensorFlow所特有的一種序列化文件格式,其他編程語言實現的TensorFlow中同樣支持:
In [5]:
model.save('mymodels/mnist_model', save_format='tf') # 將模型保存為SaveModel格式
WARNING:tensorflow:From /home/chb/anaconda3/envs/study_python/lib/python3.7/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1781: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. INFO:tensorflow:Assets written to: mymodels/mnist_model/assets
In [6]:
new_model = keras.models.load_model('mymodels/mnist_model') # 加載模型
方法二:model.save_weights()¶
save()方法會保留模型的所有信息,但有時候,我們僅對部分信息感興趣,例如僅對模型的權重參數感興趣,那么就可以通過save_weights()方法進行保存。
In [14]:
model.save_weights('mymodels/mnits_weights') # 保存模型權重信息
In [15]:
new_model = Sequential([ # 創建新的模型
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(32, activation=tf.nn.relu),
layers.Dense(10)
]
)
new_model.compile(loss='sparse_categorical_crossentropy',
optimizer=keras.optimizers.RMSprop())
new_model.load_weights('mymodels/mnits_weights') # 將保存好的權重信息加載的新的模型中
Out[15]:
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f49c42b87d0>